Scatterometer winds for mesoscale dynamics

Ad.Stoffelen@knmi.nl Anton Verhoef, Wenming Lin, Marcos Portabella, Patrick Bunn, Jos de Kloe, Jur Vogelzang, Jeroen Verspeek

Convection

Geophysical Model Function departure, cone distance or MLE

Convection

×

- Convergence and curl structures associated with convective cell
- Inflow convergence
 - Precipitation is associated with wind downburst
- Shear zones with curl (+ and -)

9:00 **ASCAT** 9:15

9:30

10:30

10:45

- Large-scale gust front
- Large wind change in 50 minutes over 200-km area

25 February 2014, near 2W, 4N

Developing gust band

MLE – GMF (cone) distance

- The GMF represents mean conditions on the globe; locally differences occur due to non-nominal conditions:
- Sub-WVC wind variability
- Rain splash
- Rain cloud attenuation and backscatter (Ku band)
- Land contamination
- Sea ice contamination
- Sea structures

For ASCAT sub-WVC wind variability appears most prominent; most extreme near lows, fronts and convection

ASCAT ambiguities+MLE

ECWMF wind+MLE

Ambiguity

ASCAT solutions+speed

- Ambiguities show streamlines of the flow; can you follow them?
 Is ECMWF right?
 Do you see consistency in the ASCAT winds and the ASCAT MLEs?
- Are there better ASCAT solutions to the ambiguity problem?

ASCAT ambiguities+MLE

ECWMF wind+MLE

ASCAT solutions+speed

ASCAT solutions+MLE

>QC to unreprese observ

Use MLE

 Denotes flow boundaries
Nowcasting
Ambiguity removal
Proxy for large and shortscale forecast errors
QC to remove

unrepresentative observations in data assimilation

ASCAT-B and ASCAT-A

MLE

21

$> \sim 50$ minutes difference only!

33, -137; 18:40/19:30 March 28, 2013

Tropical variability

- 1. Dry areas reasonable
- 2. NWP models lack airsea interaction in rainy areas
- 3. ASCAT scatterometer does a good job near rain
- QuikScat, OSCAT and radiometers are affected by rain droplets
- Portabella et al., TGRS, 2011

ASCAT 25 km (selected) winds closer to buoy winds than ECMWF winds in rainy areas (**buoy rain data**).

ASCAT-A ASCAT-B collocation

• Global, $\Delta t=50$ min.

- Small spread in NWP due to 50 minutes time difference (smooth wind fields)
- Larger spread in ASCAT due to much smaller resolved scales (e.g., convection)

Spatial representation

- > We evaluate area-mean (WVC) winds in the empirical GMFs
- 25-km areal winds are less extreme than 10-minute sustained in situ winds (e.g., from buoys)
- So, extreme buoy winds should be higher than extreme scatterometer winds
- Extreme global NWP winds should be generally lower due to lacking resolution (over sea)

QC: Which error is acceptable?

- We can produce winds with SD of buoy-scatterometer difference of 0.6 m/s, but would exclude all high-wind and dynamic air-sea interaction areas
- The winds that we reject right now in convective tropical areas are noisy (SD=1.84 m/s), but generally not outliers!
- What metric makes sense for QC trade-off?

KNMI HY2A vs ECMWF

- NWP ocean calibration (standard for wind processing)
- Speed, direction and vector components
 - Outlier detection

Small scales evolve fast, so when we want to determine (initialize) them in 4D, we will need many observations

Summary

- ASCAT-A and -B tandem are excellent for investigating dynamical aspects of convection
- MLE denotes gustiness and wind variability
- MLE complements imagery, particularly in case of convection or in pin-pointing extratropical fronts under a heavy cloud deck
- MLE could be used in 2DVAR and NWP
- Do not throw valuable ASCAT data away, unless you cannot handle it ③

Triple collocation

Data from November 2012 to January 2013

- Errors on scatterometer scale
- > A and B very similar

	Scatterometer		Buoys		ECMWF	
m/s	σ _u	σ_{v}	σ_u	σ_{v}	σ _u	σ_{v}
ASCAT-A 25-km	0.63	0.71	1.21	1.35	1.39	1.44
ASCAT-B 25-km	0.63	0.66	1.26	1.39	1.38	1.42
ASCAT-A Coastal	0.76	0.84	1.18	1.34	1.54	1.57
ASCAT-B Coastal	0.81	0.79	1.24	1.35	1.53	1.57