

FY-2 On-orbit Operational Calibration Approach (CIBLE) and its Benefit to FY-2D/E AMV Products

*Qiang Guo**, Boyang Chen, Xuan Feng, Changjun Yang, Xin Wang, Xiuzhen Han (Working Group of Operational Calibration, WGOC for FY-2 Satellite)

guoqiang@cma.gov.cn

National Satellite Meteorological Center (NSMC), CMA

Copenhagen, Denmark, June 16, 2014

Outline

- Current Status & Challenge for FY-2 Calibration
- Brief Introduction to CIBLE
 - Basic Principles & Key Technologies
 - **Overview the Working Performance of CIBLE**
 - Bias Evaluation & Primary Application
 - **CIBLE's Benefit to FY-2D/E AMV Products**
 - Conclusion

Current Status & Challenge for FY-2 Calibration

Satellite	Launch Time	Application and Main Merits	
FY-2A	1997.06.10	Subseries 1 st , Experimental Satellite:	
FY-2B	2000.06.25	technologies of the whole system are completed.	
FY-2C	2004.10.19	Subseries 2 nd , Operational Satellite: • Operational Stabilized Systems for both space and ground segments • INR technique has been conquered	
FY-2D	2006.12.08		
FY-2E	2008.12.23	 Inter-calibration and main products have been in operation 	
FY-2F	2012.01.13	Subseries 3 rd , Operational Satellite: Quantitative applications are willing to be improved in an overall scale, where the increase of calibration accuracy is one of the most important factors!	

NAME (SALON ADDA)

Main features of current calibration methods for FY-2 satellite

Types	Methods	Merit	Shortcoming
Before Launch	In-lab Cal.	High calibration accuracy, mainly used for sensitivity and amplification parameter determination	A few conditions cannot represent fully the on-orbit environment. Application for onboard payload is limited
After Launch	Inter-Calibration (AVHRR/HIRS)	Calibration performance of AVHRR is stable with long-term observation serials, and its spatial resolution is at the same order (Km) as FY-2 VISSR	Wide-band sensor, the performance of spectral response matching is limited and finally influence the calibration accuracy.
	Inter-Calibration (GSICS)	Calibration performance of IASI/AIRS is stable. Spectral response matching can be solved with these high spectral resolution sensors	Lower spatial resolution at 10 ¹ Km order (12/13.5), spatial matching depends on targets, especially for non- window band, e.g. water-vapor
	In situ Calibration	In situ target and atmospheric feature can be measured directly. Generally used for validation with high accuracy	Limited number of in situ targets with a relative narrower dynamic range for calibration
	Sea buoy Calibration	Calibration with uniform water body, whose radiometric feature is quite stable	Temperature measured by sea buoy differs from the surface one observed by onboard sensor. The range focus on high segment (>270K)

Thermal environment of FY-2 is continuously changing, which requires some new calibration source with high frequency and accuracy

Brief Introduction to CIBLE

Basic Principles of CIBLE

Based on the in-lab radiometric calibration with high accuracy, the on-orbit lunar calibration as well as the inner-blackbody one are proposed, and the CIBLE has been finally realized by radiation transformation between different reference standards.

Key Technique of CIBLE: Lunar Calibration (LC) in TEB

Feasibility of TEB Lunar Calibration:

The Moon's photometric stability is as perfect as 10⁻⁹ per year and it is surrounded by a black field in both reflective and emissive bands. (*J. Atmos. Oceanic Technol.*, Vol.13, pp.360-374)

- No significant emission or absorption feature;
- Surface temperature peak at infrared wavelength;
- Thermal emission spectra can be modeled as a function of illumination and viewing geometry.

(ICARUS, Vol.92, pp.80-93)

For full moon with zero phase angle (*Opt. Eng., Vol.38, No.10, pp1763-1764*)

$$L_{\text{emitted}} = \varepsilon(\lambda) L^{\text{bb}}(\lambda, 390 \text{ K})$$

At present, lunar calibration is mainly applied in RSBs, for example MODIS, SeaWiFs and GOES imager. In 2010, Xiong *et al.* used on-orbit lunar observations to evaluate the calibration performance of MODIS's MIR band.

Lunar Obs. on ground: RObotic Lunar Observatory (ROLO) Project

Moon's position distribution for LC in TEBs (Examples as for FY-2E)

and here a

Continuous Moon Observations with area-scanning mode of FY-2F in Apr. 16, 2012

Inner-Blackbody Calibration (IBBC) for FY-2 Satellite TEBs

- Main Optical Components1: Primary Mirror2: Secondary Mirror6/7: Relay lens
- **10: Mirror for Cal.**
- **12: Inner-Blackbody**

Main Challengers for IBBC of FY-2 satellite • The *radiometric contribution of front-optics*, including primary and secondary mirrors, has different effects on IBBC as well as spaceview.

 The thermal environment of aft-optics for FY-2 cannot be controlled perfectly.

IBBC results for FY-2E between January 1 and April 27, 2012

Calibration slope's diurnal variation for FY-2F during satellite eclipse period

ΔT(Processing time for CIBLE): Min=16s, Max=43s

The latest calibration results of CIBLE will be added in S-VISSR stream at the beginning of No.201 scanning line. (about 2 minutes later)

Overview the Working Performance of CIBLE

FY-2E Satellite Operational Calibration Accuracy Monitoring

Calibration slope comparison between CIBLE and O.C. in IR1 band during 2012

Analysis of CIBLE's accuracy in IR1 band during 2012 for FY-2E

Hyper Sounder TB (K)

CrIS as reference,

IR1:-0.5K@290K

CIBLE's Benefit to FY-2D/E AMV Products

STDV(AMV) analysis for Water-Vapor band between Mar. 27 and Apr. 27 in 2013

http://www.ecmwf.int/products/forecasts/d/charts/monitoring/satellite/amv/windspeed/

STDV(AMV) analysis for Water-Vapor band between March 6 and April 5 in 2014

4.596

150°E

60°N

30°N

0°N

30°S

60°S

60°N

30°N

0°N

30°S

60°S

150°E

4.106

12.42

9.03

8.73

8.42

8.11

7.81

7.50

7.20

6.89

6.58

6.28

5 97

5.67

5.36

5.05

4.75

4.44

4.14

3.83

3.52

3.22

2.91

0.01

12.83

8.33

8.04

7.76

7.47

7.18

6.90

6.61

6.33

6.04

5.75

5.47

5.18

4.89

4.61

4.32

4.03

3.75

3.46

3.17

2.89

2.60

1.02

http://www.ecmwf.int/products/forecasts/d/charts/monitoring/satellite/amv/windspeed/

AMV analysis for Infrared band between before vs. after CIBLE switch of FY-2D

http://www.ecmwf.int/products/forecasts/d/charts/monitoring/satellite/amv/windspeed/

Conclusion

• The CIBLE method has been independently developed by using both lunar calibration (LC) and inner-blackbody calibration (IBBC) for TEBs, which is widely considered to be a prominent progress in terms of operational calibration for FY-2 satellite.

• The CIBLE software has been operational working in ground segments of FY-2F, FY-2E and FY-2D satellites since July 21, 2012, March 27 and May 21, 2013 respectively, whose calibration accuracies are evaluated to be superior to 1K@300K. At the same time, the difficulty of calibration with high accuracy for the radiometric response, which varies rapidly with VISSR's thermal environment, has been conquered successfully.

• By using the latest CIBLE outcomes, the performances of AMV has also been greatly improved. Particularly, it is validated by ECMWF that the RMSE of WV-AMV for FY-2E satellite remains 4-5 m/s and the bias of IR-AMV for FY-2D satellite has been decreased by about 1.5 m/s after using CIBLE approaches.

Thanks for your attention!

