

Koninklijk Nederlands Meteorologisch Instituut Ministerie van Infrastructuur en Milieu

Sampling Aeolus Winds for Data Assimilation

Ad.Stoffelen@knmi.nl Gert-Jan Marseille Jos de Kloe Jur Vogelzang Harald Schyberg, MetNo KNMI satellite winds group

532 nm Total Attenuated Backscatter, /km /sr Begin UTC: 2006-07-24 03:36:08.8072 End UTC: 2006-07-24 03:49:37.4542

Version: 2.01 Image Date: 12/14/2007

> CM has a 2D plane of observations rather than snapshots in BM

. IWW11, Feb 2012

×

Koninklijk Nederlands

Meteorologisch Instituut

Ministerie van Infrastructuur en Milieu

- Rayleigh performance specification over 50 km is not met any more since less signal is available (50 Hz rather than 100 Hz)
- ➤ The 50-km performance spec. is now met over 100 km
- Two independent 100-km observations now appear over a 200-km track rather than one 50-km observation in burst mode, i.e., more information content
- No physical observation boundaries exist any more (i.e., adjacent BRCs now) and more flexibility in cloud classification and measurement grouping appears – 2D plane of observations
- ➢ How to exploit Continuous Mode ?
 - Spatial aggregation & representation error
 - Thinning or more smart exploitation ?
 - → How to set vertical and horizontal sampling in CM 2D plane ? (VHAMP)
- > What are the relevant spatial scales

- $o = x + \delta o$ observation • $b = x + \delta b$ background (prior)
- a = b + W(o-b) analysis

x : state variable, spatial average over the true weather, due to limitations in the NWP model

 δo : random observation error, contains representation error, spatially correlated, since the (spatial) context of o is generally different from x

 δb : random background error, spatially correlated

W : weight, depends on "average" covariances of δo in a matrix R=O+F and δb in a matrix B; O for observation error and R for representation error

Scales < B scales in o-b are generally removed in DAS (low pass filter)

≻ B, O and F, variances and correlation, are essential in data assimilation

4 IWW11, Feb 2012

- Kolmogorov (1941)
- Distribution of kinetic energy density among wave number scales

$$E(k) = C \varepsilon^{2/3} k^{-5/3}$$

C=0.5 is the universal Kolmogorov constant, ε the energy dissipation rate; troposphere mean: 7.76 10⁻⁵ m²s⁻³ *k* is the wave number in m⁻¹

• Integrated variance and spatial structure function

$$e(r) = 3/2 \ C \ \varepsilon^{2/3} r^{2/3}$$

Representation error for point observation

Mathieu & Scott (2000); Lindborg (1999); Nastrom & Gage (1987)

Koninklijk Nederlands Meteorologisch Instituut Ministerie van Infrastructuur en Milieu

Ň

Nastrom & Gage Spectrum

ASCAT/Mode-S/ECMWF spectra u-component

- "Dutch" spectra at 11km height are more energetic than global surface wind spectra, as anticipated
- "Dutch" Mode-S aircraft spectra show some red noise below 10km scale
- ECMWF spectra behave very similar w.r.t. Mode-S and ASCAT observations
- Effective ECMWF model resolution may be rather uniform with height

Houchi et al., 2010

Triple collocation result

	u	V
Bias ASCAT (m/s)	0.15	-0.02
Bias ECMWF (m/s)	0.28	0.08
Trend ASCAT	1.01	1.01
Trend ECMWF	1.03	1.04
σ ASCAT (m/s)	1.05	1.29
σ ECMWF (m/s)	1.28	1.14
Representation error	0.79	1.00

Representation error from spectrum difference integrated from k⁻¹=25 km to k⁻¹=800 km included in scat

- Wind representation error is substantial
- > Wind representation error is spatially correlated
- > Needs to be accounted for in data assimilation

- Random instrument error is independent from random representativeness error, since the latter represents by definition unobserved scales
- Random observation error is independent from model error as the model error is specified on NWP model resolved scales only and observation error on smaller scales
- Random instrument errors should not be correlated on model scales (e.g., by air mass)

Suitable "uncorrelated " obervations

- > We need them both vertically and horizontally
- (o-b) from high-resolution aircraft (Mode-S), scatterometer, high-resolution radiosonde, ECMWF, HiRLAM
- Main challenge: how to determine the characteristics of *t* (model basis true state) ?
- If *t* is known than the correlation lengths scales of *R=O+F* and *B* can be determined.

Koninklijk Nederlands Meteorologisch Instituut Ministerie van Infrastructuur en Milieu

Ň

ECMWF horizontal length scales in B

- Synthetic
- Both similar
- Height dependent

Harald Schyberg, MetNo Preliminary

IWW11, Feb 2012

N.

Koninklijk Nederlands Meteorologisch Instituut

Ministerie van Infrastructuur en Milieu

Depth scales in B

- Synthetic
- All similar
- Height dependent

Harald Schyberg, MetNo Preliminary

. IWW11, Feb 2012

- Although CM is really different from BM and does not meet the current Aeolus wind performance specification, the CM provides more flexibility (no BRC boundaries) in data processing and assimilation; we need to investigate the potential benefits
- CM mission exploitation requires new research on data assimilation and impact in both regional and global NWP models
- Study items for regional and global models
 - Spatial representativeness errors
 - B scales, L(h), D(h)
 - Assimilate spatially irregular and correlated data (in a 2D plane)
 - Impact (OSSE, SOSE, EnDA)
- Investigate more fundamental L2B software updates with flexibility in QC and spatial processing
- ➢ Work in progress in Aeolus VHAMP, L2Bp and ECMWF impact projects

THANKS !

Comparison of SeaWinds with ECMWF and buoys

All triple collocation data from January 2008

	SDP at 25 km		SDP at 100 km	
	$\sigma_{\rm u} ({\rm m/s})$	$\sigma_{\rm v}({ m m/s})$	$\sigma_{\rm u} ({\rm m/s})$	$\sigma_{\rm v} ({ m m/s})$
ECMWF	1.87	1.83	> 1.57	1.48
Buoys	1.79	1.88 <	2.17	2.06

When going to coarser resolution

 \Rightarrow Agreement with model increases by 2,19 m2/s2 for wind vector

 \Rightarrow Agreement with buoys decreases by 2,21 m2/s2 for wind vector

 \Rightarrow In line with spectral analysis

- 3 month ASCAT/ECMWF data: 1/10/2008 31/12-2008
- (o-b) statistics for u and v wind components; global coverage

• Data averaging along a satellite track

Mean averaging for u/v of 232/266 km is larger than nominal Aeolus averaging of 100 (troposphere)-140 (stratosphere) km

 \blacktriangleright Aeolus CM contains scales not represented by the model \Rightarrow representativeness error

- The Rayleigh molecular channel is the Aeolus work horse: it provides rather continous sampling of the atmosphere with rather homogeneous error (but for sensitivity to particle contamination lower down)
- The Mie particle channel provides good signal in the PBL and also on cloud and aerosol elsewhere but this is relatively sparse (concerns exist for cloud-associated dynamics and optical heterogeneity)
- ➢ How to combine both channels is TBD in the Aeolus L2B project

WW11, Feb 2012

Mie wind coverage

- ➤ Mie in ~10% of cases in Upper Trop.
- At each UT level 90% of scenes has no Mie wind
- Mie provides no full profiles generally
- CM yields substantially more Mie winds than BM
- 3.5 km accumulation is often sufficient to get a good quality Mie wind.

- High percentage of winds
- For the sampling scenario used, at least 80 km accumulation is needed for good quality
- Depends on laser energy

- Model error vertical correlation length and depth scales are guiding in the horizontal and vertical positioning of the Aeolus bins, e.g.,
 - Denser vertical sampling at levels where the B-matrix vertical depth scales are small and horizontal length scales are large (UTLS, stratosphere)
 - Accumulation length and depth variation may be a function of height
- Spatial representativeness error is important, particularly its spatial extent
- Observed wind data may be spatially irregular due to varying aggregation at different heights; is this problematic ?
- > VHAMP and Aeolus wind processor studies ongoing to further investigate this.

- > CM does not meet the Aeolus specifications
- CM however offers more flexibility for spatial processing and QC and its potential needs scientific elaboration
- Aeolus CM characteristics have been briefly studied
 - Rayleigh winds are everywhere, but essentially SNR driven
 - Mie winds are sparse (at 10% level), but potentially dense in cloudy layers
- Laser power degradation (33%) would severely compromise the quality of Rayleigh winds and the number of Mie winds
- Mie winds are potentially available on small scales and rather heterogeneous
- NWP data assimilation of CM offers some challenges since adjacent observations can no longer be assumed independent:
 - 3D representativeness error correlation
 - How to assimilate dense wind observations of rather homogeneous quality in a 2D plane ?
- > Few studies exists on spatial aggregation and data assimilation.