

### Observing System Simulation Experiments for a Space-borne Doppler Wind Lidar in the Joint Center for Satellite Data Assimilation

Lars Peter Riishojgaard<sup>1,2</sup>, Zaizhong Ma<sup>1,2</sup>, Michiko Masutani<sup>3</sup>, Jack Woollen<sup>3,</sup> Dave Emmitt<sup>4</sup>, Sid Wood<sup>4</sup>, Steve Greco<sup>4</sup>

<sup>1</sup>Joint Center for Satellite Data Assimilation <sup>2</sup>University of Maryland Baltimore County <sup>3</sup>NCEP Environmental Modeling Center <sup>4</sup>Simpson Weather Associates



- NASA/NOAA collaboration started in 2007, involving NASA/ GSFC, NOAA/NESDIS, NOAA/NWS, NOAA/OAR
- Centered around common use of Nature Run provided free of charge by ECMWF
- Coordinated through JCSDA
  - Informal, loosely structured nature, lack of common funding stream has presented challenges
- Successful joint validation of ECMWF Nature Run
- Some collaboration on simulation and calibration of observations
- ADM experiments (GMAO)
- GWOS experiments (JCSDA)
- UAS experiments (OAR)



# Wind Lidar OSSEs

- Impact experiments for GWOS mission concept
  - NASA Tier-3 Decadal Survey mission concept
  - Four telescopes, full vector winds on either side of spacecraft
  - Two technologies, direct and coherent detection
- Experiments funded under Wind Lidar Science element of NASA's ROSES 2007
- GWOS observations simulated by Simpson Weather Associates using DLSM

## **Doppler Lidar Measurement Concept**







### **GWOS ISAL Instrument Quad Chart**





#### Payload Data

| Dimensions | 1.5m x 2m x 1.8m |
|------------|------------------|
| Mass       | 567 Kg           |
| Power      | 1,500 W          |
| Data Rate  | 4 Mbps           |

#### **Technology Development Needs**

- Direct detection system requires 6 billion shots for mission lifetime (2 years)
  - · Direct channel baseline is 3 lasers + 1 backup
  - Demonstration of reliable performance at higher or lower lifetimes will determine number of lasers for direct detection channel, impacting mission cost
- Coherent detection system requires demonstration of the 316M shot lifetime in a fully conductively cooled laser
- > Both Lidar technologies require aircraft validation flights





- NCEP GFS at horizontal resolutions T-126 and T-382
- "OSSE period": July 01-Aug 15, 2005 (simulated)
  - Five-day forecast launched every day at 00Z
  - Most observing systems used for routine operational NWP included, except GPSRO and IASI (will be corrected once we simulate 2010/11 GOS)
- Four experiments, all verified against Nature Run
  - CRTL: Observations as assimilated operationally by NCEP
  - NOUV: as CTRL, but without RAOBS (220, 221 and 232)
  - NONW: as CTRL, but without any wind observations
  - DWL : as CTRL, plus simulated GWOS lidar wind data



### <u>500hPa HGT anomaly correlation coefficients</u> (T126)



![](_page_8_Picture_0.jpeg)

### <u>500hPa HGT anomaly correlation coefficients</u> (T382)

![](_page_8_Figure_2.jpeg)

![](_page_9_Figure_0.jpeg)

![](_page_10_Picture_0.jpeg)

#### <u>RMSE: 200, 850hPa Wind error in tropics</u> (T382)

![](_page_10_Figure_2.jpeg)

![](_page_11_Picture_0.jpeg)

# Single LOS or Vector Winds?

- Important configuration issue for GWOS (impact vs. cost)
- Experiments performed with variable number of perspectives:
  - One; single line of sight, similar to ADM/Aeolus
  - Two; full horizontal wind vectors, left or right side of satellite track
  - Four; full GWOS coverage; wind vectors on both sides of satellite track

![](_page_11_Picture_7.jpeg)

Impact of Different Wind Lidar Configurations on NCEP Forecast Skill.

## **GWOS Lidar Wind obs**

![](_page_12_Figure_1.jpeg)

Distribution of Lidar observations for one analysis cycle (July 7 2005, 00Z)

Number of Lidar obs per analysis cycle, before and after QC (shown only for 00Z)

![](_page_12_Figure_4.jpeg)

# Analysis Impact: Wind

![](_page_13_Figure_1.jpeg)

![](_page_13_Figure_2.jpeg)

SATELLITE

11th International Winds Workshop, Auckland, Feb 20-24 2012

![](_page_14_Picture_0.jpeg)

# Analysis Impact: Tropical winds

![](_page_14_Figure_2.jpeg)

15

![](_page_15_Picture_0.jpeg)

### Forecast: Tropical Wind (RMS error at 200, 850hPa)

![](_page_15_Figure_2.jpeg)

![](_page_16_Picture_0.jpeg)

### Forecast skill: 500 hPa height AC

![](_page_16_Figure_2.jpeg)

17

![](_page_17_Picture_0.jpeg)

- A comprehensive OSSE system has been developed under the Joint OSSE collaboration
- Initial results simulating expected impact of GWOS observations on NCEP GFS system are very encouraging
  - Small positive impact in NH extratropics (summer)
  - Larger positive impact in SH extratropics (winter)
  - Very large positive impact in tropics; implications for hurricane forecasting
  - Two perspectives, more coverage lead to larger impact

![](_page_18_Picture_0.jpeg)

# Outlook

- Experiment in opposite season (NH winter/SH summer)
- Increased horizontal resolution (T-574 and higher; requires new Nature Run)
- Detailed case studies
- Separate assessments of the impacts of Direct Detection and Coherent Detection
- Other orbits, e.g. different altitude, lower inclination
- Impact on applications other than NWP, e.g. chemical transport models

Acknowledgments: Study funded primarily through Wind Lidar Science Element of NASA ROSES 2007 (Kakar). Additional resources including computing made available by NCEP/EMC.