MISR 17.6 km Gridded Cloud Motion Vectors: Overview and Assessment

Kevin Mueller, Michael Garay, Catherine Moroney, Veljko Jovanovic
Jet Propulsion Laboratory
Feb. 22, 2012

Mean MISR July 2007 Cloud Motion Vectors of height < 3 km
Introduction and Overview

• Introduction and Overview
 – The MISR Instrument
 – MISR Cloud Motion Retrieval
 – New MISR Product Developments

• 2012 MISR Cloud Motion Vector Product (CMVP)
 – Overview of 2012 TC Cloud Product Algorithm
 – Comparison with previous CMVP
 – CMV Sampling Frequency and Coverage

• Atmospheric Motion Vector Intercomparison
 – MISR versus RAOB
 – MISR versus GOES
 – MISR versus MODIS

• Conclusion
 – 17.6 km CMV resolution (as opposed to 70.4 km)
 – 3x coverage
 – Better agreement with RAOB, GOES, and MODIS
 • Low Cloud CMV MISR vs. GOES RMSVD ~ 3.3 m/s
 • Low Cloud CMV MISR vs. GOES bias removed
 • MISR along-track bias reduced by 50-80% generally
 • MISR RMSVD reduced by 10-60% generally
The Multi-Angle Imaging SpectroRadiometer (MISR)

MISR cloud motion capabilities:
- Two Camera Cloud Retrieval
 - Cross-track cloud motion, $\Delta t = 50$ seconds
 - Cloud Top Height (along-track error 90 m/ms-1)
- Three Camera Cloud Retrieval:
 - Full cloud motion vector, $\Delta t = 200$ seconds
 - Cloud Top Height (no along-track error)

MISR highlights
- Mission Lifetime
 - 2001 -> 2017
- Swath Width ~ 360 km
- 9 Camera View Angles
 - 0° (Nadir)
 - $\pm 26.1^\circ$, $\pm 45.6^\circ$
 - $\pm 60.0^\circ$, $\pm 70.5^\circ$
 - 7 minute sequence
- R, G, B, & NIR Bands
- Resolution
 - 275 m for Nadir and Red Band
 - 1100 m all else
What is MISR capable of?

- Case study illustrates possibilities
- Example shows u' and v' calculated on 4 km grid
Recent MISR Developments

• **New (March 2012) MISR TC Cloud Product**
 – Based on and intended to replace existing MISR TC Stereo Product
 – Highlights:
 • 17.6 km CMV resolution (as opposed to 70.4 km)
 • 3x areal coverage
 • Bias versus RAOB, MODIS, and GOES greatly reduced
 • RMSVD versus RAOB, MODIS, and GOES greatly reduced
 • Quality Indicator (QI) follows EUMETSAT methodology

• **5 Hour Latency Possible (From Sensing to Data Availability)**
 – Current latency between sensing and data availability is 12 hours
 – Initial investigation shows negligible difference in product quality

• **New (April 2012) MISR Cloud Motion Vector Product**
 – Cloud Motion Vector Product (CMVP) packages MISR CMV data into smaller simpler NetCDF files
 – CMVP as introduced in August 2011 repackages TC Stereo Product data
New MISR Example: Hurricane Franklin

- Operational TC Cloud Product handles cyclones / multi-layer cloud quite well
- Finer resolution case studies perform better

07/25/10 1600z
New MISR Example:
LA Coastal Circulation
1.1 km Cross-track motion: Ida
1.1 km Cross-Track Motion: Hurricane Ida
TC Cloud Algorithm Overview

<table>
<thead>
<tr>
<th>Process</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hierarchical SAD Correspondence</td>
<td>• Applies (Normalized) Sum-of-Absolute-Differences (SAD) using 5x5 km area for image pairs sampled at resolution 1100 m, then 550 m, and finally 275 m.</td>
</tr>
<tr>
<td>Density Based Clustering</td>
<td>• Extracts dominant signal extracted from 256 1100 x 1100 m disparities within 17600 x 17600 m grid cell</td>
</tr>
<tr>
<td>Registration Correction</td>
<td>• Corrects for focal plane distortion unaccounted for in L1B2 processing</td>
</tr>
<tr>
<td>Height and Motion Reconstruction</td>
<td>• Solves overconstrained system of equations for cloud feature position and motion given observed disparities</td>
</tr>
<tr>
<td>Cloud Masking</td>
<td>• Removes near-surface low-speed retrievals</td>
</tr>
<tr>
<td>Quality Filtering</td>
<td>• Assigns quality indicator and screens low quality retrievals following EUMETSAT methodology</td>
</tr>
</tbody>
</table>
70.4 -> 17.6 km resolution, >3x coverage
70.4 -> 17.6 km resolution, >3x coverage
Jan / July Test Data

<table>
<thead>
<tr>
<th>Height Range</th>
<th>Previous TC Stereo (QI > 50)</th>
<th>New TC Cloud (QI > 50)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Produced at 70.4 km resolution</td>
<td>Averaged to 70.4 km resolution</td>
</tr>
<tr>
<td>0-3 km</td>
<td>444</td>
<td>1126</td>
</tr>
<tr>
<td>3-7 km</td>
<td>66</td>
<td>376</td>
</tr>
<tr>
<td>7+ km</td>
<td>31</td>
<td>225</td>
</tr>
</tbody>
</table>

Number of CMV x1000

<table>
<thead>
<tr>
<th>Height Range</th>
<th>Previous TC Stereo (QI > 50)</th>
<th>New TC Cloud (QI > 50)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% of 1.1 km stereo heights with matching CMV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>52%</td>
<td>87%</td>
</tr>
<tr>
<td></td>
<td>27%</td>
<td>77%</td>
</tr>
<tr>
<td></td>
<td>26%</td>
<td>77%</td>
</tr>
</tbody>
</table>

Retrieval Efficiency

Diagrams

Previous vs. New

- **Previous**: MISR CMV Cloud Top Altitude distribution
- **New**: MISR CMV Cloud Top Altitude distribution
One day of MISR CMV Sampling

January 3, 2007

July 1, 2007

CTH (m)
Improved Agreement With GOES

<table>
<thead>
<tr>
<th>Vs. GOES January/July 2007</th>
<th>Previous TC Stereo (QI > 50) Produced at 70.4 km resolution</th>
<th>New TC Cloud (QI > 50) Averaged to 70.4 km resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>0-3 km</td>
<td>3-7 km</td>
</tr>
<tr>
<td>Component bias (along, cross-track)</td>
<td>1.2, -0.3</td>
<td>2.9, -0.2</td>
</tr>
<tr>
<td>Component RMS (along, cross-track)</td>
<td>3.1, 1.6</td>
<td>6.0, 3.0</td>
</tr>
<tr>
<td>Vector RMSD</td>
<td>3.7</td>
<td>7.3</td>
</tr>
</tbody>
</table>

Note: TC Cloud at native 17.6 resolution

<table>
<thead>
<tr>
<th></th>
<th>0-3 km</th>
<th>3-7 km</th>
<th>7+ km</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>52600</td>
<td>3700</td>
<td>8500</td>
</tr>
<tr>
<td>Component bias</td>
<td>0.1, -0.3</td>
<td>1.2, 0.0</td>
<td>1.3, -0.1</td>
</tr>
<tr>
<td>Component RMS</td>
<td>2.7, 1.8</td>
<td>5.1, 3.5</td>
<td>5.7, 3.5</td>
</tr>
<tr>
<td>Vector RMS</td>
<td>3.3</td>
<td>6.3</td>
<td>6.8</td>
</tr>
<tr>
<td>Vs. GOES January/July 2007</td>
<td>New TC Cloud (QI > 50) Averaged to 35.2 km resolution</td>
<td>New TC Cloud (QI > 75) Averaged to 35.2 km resolution</td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0-3 km</td>
<td>3-7 km</td>
<td>7+ km</td>
</tr>
<tr>
<td>Coincidences</td>
<td>69000</td>
<td>6600</td>
<td>18100</td>
</tr>
<tr>
<td>Component bias (along, cross-track)</td>
<td>0.1, -0.3</td>
<td>1.3, -0.0</td>
<td>1.5, -0.5</td>
</tr>
<tr>
<td>Component RMS (along, cross-track)</td>
<td>3.1, 1.6</td>
<td>6.0, 3.0</td>
<td>7.7, 3.8</td>
</tr>
<tr>
<td>Vector RMSD</td>
<td>3.2</td>
<td>6.3</td>
<td>7.1</td>
</tr>
</tbody>
</table>
Improved Agreement With Arctic RAOB

<table>
<thead>
<tr>
<th>Vs. Arctic RAOB 2002-2008</th>
<th>Previous TC Stereo (QI > 50) Produced at 70.4 km resolution</th>
<th>New TC Cloud (QI > 50) Averaged to 70.4 km resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0-3 km</td>
<td>3-7 km</td>
</tr>
<tr>
<td>Number</td>
<td>323</td>
<td>121</td>
</tr>
<tr>
<td>Component bias</td>
<td>1.8, 0.7</td>
<td>3.8, 0.1</td>
</tr>
<tr>
<td>(along, cross-track)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Component RMS</td>
<td>4.5, 3.2</td>
<td>9.0, 3.5</td>
</tr>
<tr>
<td>(along, cross-track)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vector RMSD</td>
<td>5.9</td>
<td>10.3</td>
</tr>
</tbody>
</table>

Note: TC Cloud at native 17.6 resolution

<table>
<thead>
<tr>
<th></th>
<th>0-3 km</th>
<th>3-7 km</th>
<th>7+ km</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>206</td>
<td>67</td>
<td>19</td>
</tr>
<tr>
<td>Component bias</td>
<td>0.6, 0.0</td>
<td>1.3, 0.0</td>
<td>0.3, 0.5</td>
</tr>
<tr>
<td>(along, cross-track)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Component RMS</td>
<td>4.7, 3.5</td>
<td>4.1, 3.2</td>
<td>3.8, 1.9</td>
</tr>
<tr>
<td>(along, cross-track)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vector RMS</td>
<td>5.9</td>
<td>5.3</td>
<td>4.3</td>
</tr>
</tbody>
</table>
Improved Agreement With MODIS

Vs. Terra MODIS January/July 2007

<table>
<thead>
<tr>
<th></th>
<th>Previous TC Stereo (QI > 50)</th>
<th>New TC Cloud (QI > 50)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Produced at 70.4 km resolution</td>
<td>Averaged to 70.4 km resolution</td>
</tr>
<tr>
<td>Number</td>
<td>0-3 km</td>
<td>3-7 km</td>
</tr>
<tr>
<td></td>
<td>3320</td>
<td>3795</td>
</tr>
<tr>
<td>Component bias</td>
<td>1.6, -0.1</td>
<td>2.4, -0.4</td>
</tr>
<tr>
<td>(along, cross-track)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Component RMS</td>
<td>4.5, 3.6</td>
<td>4.8, 3.0</td>
</tr>
<tr>
<td>(along, cross-track)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vector RMSD</td>
<td>6.0</td>
<td>6.2</td>
</tr>
</tbody>
</table>

Note: TC Cloud at native 17.6 resolution
Conclusion

- **New (March 2012) MISR TC Cloud Product**
 - Based on and intended to replace existing MISR TC Stereo Product
 - Highlights:
 - 17.6 km CMV resolution (as opposed to 70.4 km)
 - 3x coverage
 - Better agreement with RAOB, GOES, and MODIS
 - Low Cloud CMV MISR vs. GOES RMSVD ~ 3.3 m/s
 - Low Cloud CMV MISR vs. GOES bias removed
 - MISR along-track bias reduced by 50-80% generally
 - MISR RMSVD reduced by 10-60% generally
 - Quality Indicator (QI) follows EUMETSAT methodology
- **5 Hour Latency Possible (From Sensing to Data Availability)**
 - Current latency between sensing and data availability is 12 hours
 - Initial investigation shows negligible difference in product quality