Characterising height assignment error by comparing best-fit pressure statistics from the Met Office and
 ECMWF system

Kirsti Salonen, James Cotton, Niels Bormann, and Mary Forsythe

Motivation

- Uncertainty in height assignment is one of the largest error sources for AMVs.
- This uncertainty should be taken into account in data assimilation to ensure effective and realistic use of the data.

Height assignment method characteristics

- Equivalent black-body temperature (EBBT)
- Works best for opaque clouds.
- Assigned height for semitransparent and small clouds often too low.
- Cloud base method
- Used only for low level clouds.
- CO_{2} slicing, $\mathrm{H}_{2} \mathrm{O}$ intercept
- Corrections for the semi-transparency of the cloud
- Challenges with low broken clouds, thin cirrus clouds, clouds in two or more layers.
- WV radiances originate primarily from upper troposphere, height determinations below 600 hPa typically rejected.

Best-fit pressure

- Pressure level where the vector difference between the observed and model wind is the smallest.
- Not calculated if

1. Difference between the observed and model wind is $>4 \mathrm{~m} / \mathrm{s}$.
2. Difference $<\boldsymbol{+} \mathbf{~ m} / \mathbf{s}$ outside of $\pm 100 \mathrm{hPa}$ from the best-fit p level

- Minor difference in approaches
- ECMWF: the minimum closest to the assigned height.
- Met Office: the actual minimum.

How often calculated?

- Best-fit pressure calculated in 25-30\% of the cases.
- No good agreement between observed and model wind in ca. 7\% of the cases.
- Multiple or broad minima in 63-68\% of the cases.

Comparison study

- Study the usability of the best-fit pressure in characterising the height assignment error.
- Met Office and ECMWF systems
- February - March 2010, 37000000 AMV observations
- Q > $\mathbf{8 0}$ for geostationary $\mathrm{AMVs}, \mathrm{QI}>\mathbf{6 0}$ for polar AMVs
- Satellite, channel, height assignment method, surface type (land/sea)
- Bias and standard deviation: assigned height - best-fit pressure
- http://research.metoffice.gov.uk/research/interproj/nwpsaf/ satwind_report/investigations/bfpress/10_03/intro.html

Meteosat-9, IR, EBBT, land

Met Office: Meteosat-9 IR 10.8, EBBT, Land

Summary of findings: EBBT

- Meteosat-9
- Below 600 hPa strong positive bias over land. Known problems with semi-transparent clouds over the hot African surface.
- GOES-11, GOES-12
- VIS channel AMVs negative bias between 800-600 hPa over sea. Known problems in height assignment in the stratocumulus inversion regions in the Pacific and Atlantic.
- MTSAT-1R
- Positive bias at low levels.
- Aqua, Terra
- Below 500 hPa positive bias and large sdevs especially on Northern hemisphere.

GOES-12, WV, CO_{2} slicing, sea

Met Office: GOES-12 WV, CO2 slicing, Sea

GOES-12 vs. MET-9, WV, CO_{2} slicing, sea

Summary of findings: $\mathbf{H}_{\mathbf{2}} \mathbf{O}$ intercept

- GOES-11/12 and Meteosat-9 share very similar characteristics in the statistics as the AMVs applying the CO2 slicing method.
- MTSAT-1R statistics are somewhat different
- Below 300 hPa positive bias.

MTSAT-1R, WV, $\mathbf{H}_{\mathbf{2}} \mathbf{O}$ intercept, sea

Met Office: MTSAT-1R WV, WV intecept

Comparison of methods: MET-9

11th International Winds Workshop 2012

Conclusions

- Best-fit pressure statistics are rather similar for both systems.
- Some differences e.g. at mid levels where ECMWF shows occasionally more pronounced biases and standard deviations.
- Largest biases and standard deviations found typically below 400 hPa height.
- Results are in good agreement with
- Known characteristics of the height assignment methods.
- Earlier findings of the quality of the AMVs.
- Best-fit pressure statistics give reliable information about the uncertainties in the AMV height assignment.

