Studying the relationship between synthetic NWP-derived AMVs and model winds

Peter Lean¹

Stefano Migliorini¹ and Graeme Kelly²

¹ EUMETSAT Fellow, University of Reading, UK ² Met Office, UK

Background

- Atmospheric Motion Vectors are observations of cloud motions, **not** direct wind measurements.
- What do AMVs represent?

 wind at a single height?
 Assumption of most observation operators
 layer average wind?
- Difficulties validating AMVs:
 - sparse sonde observations provide few co-located observations.

Motivation: Latest high resolution NWP models provide very realistic representation of cloud features and their movements.

MSG SEVIRI Q. which is real?

Met Office

6.2µm

7.3µm

8.7µm

Robert Tubbs

Opportunity: These models provide a promising framework to investigate the accuracy of AMVs as, unlike reality, the 'true' state is known at every location and height.

Perfect model framework

- 'Synthetic' AMVs generated from simulated model radiances.
- 'Truth' wind profile and cloud structure known at every location.
- Allows us to study the relationship between AMVs and the model winds.
- Quantify random and systematic AMV errors as function of cloud type.
- Design an improved observation operator using relationships found in synthetic AMV study.

NWCSAF high resolution AMV product

NWCSAF package workflow

AMV configuration

- 24x24 tracking box (no 'detailed' winds)
- 15 minute time interval between frames
- 'CCC' method for height assignment
- 10.8µm channel winds only
- 2011 v3.1 NWCSAF code

Part 2:

Producing synthetic model-derived AMVs –a case study

NWCSAF package workflow

NWCSAF package workflow

Met Office operational NWP models

© Crown copyright Met Office

UKV_D5 1p5_to_4 Variable Resolution Domain **OUTER DOMAIN: 4kmx1.5km** TRANSITION ZONE: 4km 4 1.5km **INNER DOMAIN:** 1.5km

Observed brightness temperatures (10.8 Mer 9 CH 9 REAL201111081115

Simulated brightness temperatures (10.8 [[methylic Hyld Plana 11]]) MET 9 CH 9 UKV201111081115

Speed: synthetic AMV v model truth at assigned height

UK NWCSAF IR 10.8, November 2011, Above 400 hPa

All latitude bands

High Clouds Only

Speed: real AMV v ECMWF background at assigned height

UK NWCSAF IR 10.8, November 2011, Above 400 hPa

All latitude bands

High Clouds Only

Speed: synthetic AMV v model truth at assigned height

UK NWCSAF IR 10.8, November 2011, 700-400 hPa

All latitude bands

Medium Clouds Only

Speed: real AMV v ECMWF background at assigned height

UK NWCSAF IR 10.8, November 2011, 700-400 hPa

All latitude bands

Medium Clouds Only

Speed: synthetic AMV v model truth at assigned height

UK NWCSAF IR 10.8, November 2011, Below 700 hPa

All latitude bands

Low Clouds Only

Speed: real AMV v ECMWF background at assigned height

UK NWCSAF IR 10.8, November 2011, Below 700 hPa

All latitude bands

Low Clouds Only

Direction: synthetic AMV v model truth at assigned height

UK NWCSAF IR 10.8, November 2011, Above 400 hPa

All latitude bands

High Clouds Only

Direction: real AMV v ECMWF background at assigned height

UK NWCSAF IR 10.8, November 2011, Above 400 hPa

All latitude bands

High Clouds Only

Best fit pressure level: synthetic AMVs

UK NWCSAF IR 10.8, November 2011, All levels

All latitude bands

Best fit pressure level: real AMVs

UK NWCSAF IR 10.8, November 2011, All levels

All latitude bands

Plans

- Categorize results by cloud type:
 - Are error characteristics the same for all cloud types?
 - Does AMV representivity change according to cloud type?
 - e.g. should height assignment be the same for thin cirrus as for a deep convective storm?

• Observation error correlation:

- Model 'truth' known at every AMV location.
- Use "Hollingsworth-Lonnberg" method to quantify error correlations.
- Use results to inform thinning length scales used in assimilation.
- Sensitivity to tracking box size:
 - Larger tracking boxes track large scale flow
 - What size tracking box has best relationship with model grid-scale winds?
- Design and test an improved observation operator.

In model space

NWCSAF package workflow

Summary

- A new perfect model framework has been set up to study the relationship between AMVs and the true wind vectors.
 - Technical challenges now complete.
 - Starting work on interesting science.
- Preliminary results presented from a case study.
- System has great potential:
 - Allows different contributions to total AMV error to be isolated and quantified.
 - Results will be used to inform the design of an improved AMV observation operator for mesoscale models.
- Suggestions for further uses of this system would be very welcome.

Thanks for listening

Cloud Type Product

Model

What do we need an AMV to represent?

• A global model with 30km grid boxes can't resolve the storm or its local winds, so high res AMVs may make analysis worse.

• A high resolution mesoscale model can resolve the storm so may benefit from high res AMVs.

What do we need AMVs to represent?

Spatial Scale	Time Scale	Features tracked
1000' s km	~days	Movement of synoptic systems
100' s km	~hours	Movement of fronts / troughs
10' s km	30-60 mins	Movement of convective storms
1km	minutes	Local winds within convective storm systems

Vector Difference

High Clouds Only

Met Office: UK NWCSAF IR 10.8 hl, November 2011

In observation space

<u>**V**</u> = atmospheric motion vector (**not** wind vector)

$$\delta \underline{\mathbf{v}}_{\text{O-B}} = \delta \underline{\mathbf{v}}_{\text{forecast error}} + \delta \underline{\mathbf{v}}_{\text{observation operator error}}$$
Perfect model framework