USING MODEL SIMULATIONS TO IMPROVE THE CHARACTERIZATION OF CURRENT ATMOSPHERIC MOTION VECTORS

A. Hernandez-Carrascal (ECMWF), N. Bormann (ECMWF), R. Borde (EUMETSAT), H.-J. Lutz (EUMETSAT), S. Wanzong (CIMSS)
Contents

- SimulAMV2 project - motivation and approach
- Model simulations
- Simulated imagery: how realistic are cloud structures?
- Evaluation of AMVs as single-level point estimates of wind
- Evaluation of AMVs as horizontal and vertical averages
- Error correlations
- Role of clouds
- Conclusions
SimulAMV2 project

- **Main objective:**
 - To improve the understanding of the characteristics and origins of AMV errors, to improve the use of AMVs in NWP.
- ECMWF and EUMETSAT collaboration, CIMSS contribution.
- 13-month study – end in March 2012.
- Earlier pilot simulation study (von Bremen, 2008).
SimulAMV2 - motivation and approach

- It is known that AMVs are affected by large systematic errors.
 - Important difficulty: scarcity of collocated wind / cloud observations.

- Open questions e.g. how should AMVs be interpreted?
 - As a single level observation of wind, or as a vertical average?

- Approach in this study: simulation framework
 - NWP model simulations : data and images.
 - Derive AMVs from simulated images
 - Done by EUMETSAT (prototype derivation system)
 - Model data represent a “ground-truth”.
 - Wind and clouds known – this allows detailed analysis.
Model simulations

- Study period: 24 h starting 16 Aug 2006 at 00 UTC.
- Study area: (almost) full view of MSG at 0 lon (Meteosat-8).
- Model fields and simulated images stored every 15 min.
- WRF simulation (we will present results about WRF only).
 - Kindly provided by CIMSS (Otkin et al., 2009).
 - Version 2.2 of the WRF regional model (Skamarok et al., 2005).
 - Full area of MSG at 0 lon almost covered (N and S boundaries at 58.5 deg).
 - Forecast model: 3 km nominal horizontal res at equator, 52 vertical levels.
 - Simulation is a 6-30 h forecast – spin up period 6 h.

- ECMWF simulation:
 - Forecast model: 10 km nominal horizontal resolution, 91 vertical levels.
 - Simulation is a 24-48 h forecast – spin up period 24 h.
SimuAMV2 - Simulated images: IR 10.8 µm

IFS global model

WRF regional model
SimuAMV2 - Simulated images: 10.8 µm IR

IFS global model

WRF regional model

(last image)
Simulated images: cloud structures

- Are simulated images realistic?
 - Interested in general variability of cloud structures.
 - Agreement at a location and time not relevant.

IR 10.8 µm

- WRF images: more detailed spatial structure than IFS.
Simulated images: cloud structures

- Cold tail: WRF similar to OBS (ice clouds)
- WRF spin-up during first ~9-12 h (known problem)

Temporal evolution of BT histograms – WV 6.2
Evaluation of AMVs as single-level estimates of wind

- WRF AMVs, WV 6.2
- High level
- X axis: AMV speed
- Y axis: model wind speed. Model wind is linear interpolation of model wind profile at the original AMV pres.

- AMVs from OPS at the day, WV 6.2
- High level
- X axis: AMV speed
- Y axis: FG wind speed.
Evaluation of AMVs as horizontal and vertical averages

Test: each AMV paired with model profile of horizontal-averages (radius: 0 / 30 / 40 km)

- Vertical ave:
 - Boxcar filter / layer pos: centre
 - Interval chopped if not within profile int.

- RMSVD / bias improve with depth
- Stats for NR = 0, 30, 40 km very similar
- Similar results for IR10.8 high level

WRF WV 6.2 / nr:30 / layer pos: centre
Evaluation of AMVs as horizontal and vertical averages

Similar test: layer pos now is **below** original amv pressure.

- Better than with layerpos = centre.
- RMSVD / bias best for depth =~ 140/160 hPa.
- Similar results for IR10.8 high lev
- ... does the improvement come from the average or the new location in the vertical?
Evaluation of AMVs as horizontal and vertical averages

Test: reassign AMV to a level below the original amv pressure.

- Best RMSVD / bias similar to vertical average: the improvement comes mainly from the new height.
- Best RMSVD / bias around $\Delta P = \sim 70/80$ hPa.
Evaluation of AMVs as horizontal and vertical averages

IR 10.8: horizontal (30 km rad) and vertical (boxcar, layerpos = below) average.

- Better results all levels.
- Shown SH (clearer improvements).
Evaluation of AMVs as horizontal and vertical averages

Test: calculate the level of best fit (min VD from AMV wind to model profile).
- AMV skipped if secondary/broad min.
 - Blue: $lbf_pres > amv_pres$
 - WV 6.2 - high level winds
 - IR similar all levels (not shown)
Error correlations from simulated AMVs

- Sources of error correlation (EC) in AMVs:
 - Height assignment, QC methods,
 - Use of forecast data in the derivation,
 - Interpretation of AMVs as single-level data.

- Estimates of error correlations
 - For real data: available for spatial EC, but not for temporal or vertical EC.
 - Straightforward in a simulation framework: truth is available.

- Calculations based on datasets of pairs of AMVs, generated by pairing up each AMV with all other AMVs.
 - Subject to constraints designed to focus on either spatial, vertical or temporal EC.
Spatial error correlations - AMVs from simulated IR 10.8 µm

- Good qualitative agreement with obs AMVs.
- Broader error correlations in tropics.
- Similar correlation scales for different vertical layers.

- Similar for WV
Temporal error correlations - AMVs from simulated IR 10.8

- Broad temporal EC, esp for mid and low levels.
- Likely related to persistent regional biases during the 24h period.
- Indication of a temporally uncorrelated error component.

- Similar for WV
Role of clouds

- Data from the WRF simulation available (15 min timestep):
 - Each AMV paired with model profiles at nearest grid point – variables: specific humidity, ice content, liquid water content, cloud cover, w.
 - Point values and horizontal average (radius = 30, 40 km) available.

- Classify AMVs according to cloud profile of nearest grid point.
 - Note: for WV, cloudy levels below 700 hPa are ignored.

<table>
<thead>
<tr>
<th></th>
<th>IR 10.8 (%)</th>
<th>WV 6.2 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear</td>
<td>6.4</td>
<td>29.9</td>
</tr>
<tr>
<td>Ice1</td>
<td>11.7</td>
<td>43.6</td>
</tr>
<tr>
<td>Ice1Liq1</td>
<td>31.3</td>
<td>15.4</td>
</tr>
<tr>
<td>Multi ice</td>
<td>0.7</td>
<td>3.1</td>
</tr>
<tr>
<td>Liq1</td>
<td>29.9</td>
<td>2.3</td>
</tr>
<tr>
<td>Multi Liq</td>
<td>4.8</td>
<td>0.03</td>
</tr>
<tr>
<td>The rest</td>
<td>15.2</td>
<td>5.7</td>
</tr>
</tbody>
</table>
Role of clouds – new ways of calculating model wind

1 ice layer
Lin Int to amv_pres (ref)

1 ice layer
Lin Int to cloud pMean

1 ice layer
Ver Ave: ptop - pbottom

WV 6.2
HIGH
TR

WV 6.2
HIGH
NH
Conclusions 1 - SimulAMV2 study

- Vertical and horizontal averaging leads to (slightly) better AMV stats.
 - The main improvement seems to come from assigning AMV to a lower level (the best for high level winds is around 70 / 80 hPa).

- Estimates of error correlation:
 - Horizontal – good qualitative agreement with AMVs from ops.
 - Vertical and temporal – simulation framework makes it possible to estimate them.

- Role of clouds
 - Cloud profile classification: possible to obtain stats for each type.
 - Better stats for single layer - now possible to quantify.
 - Multilayer situations tricky, but frequent (above 50% in this study).
Conclusions 2 - simulation framework

- Simulation framework is a very powerful approach.
 - Wind ground truth.
 - Model fields (clouds, ...) allow detailed analysis.

- It opens new avenues for progress in AMV derivation:
 - How do specific conditions affect AMV statistics?
 - Height assignment analysis.
 - Case studies.

- ... and also in data assimilation:
 - What is the best interpretation of AMVs?
 - Estimates of horizontal, temporal and vertical error correlations possible.

- But this is early days – the approach has its limitations:
 - NWP model: resolution, realistic cloud structures, spin-up, ...
 - Study period: one day is a very short period (but a huge amount of data!)
 - A range of new possibilities - we have just started to scratch the surface.
Thank you for your attention

Final project report coming soon (= end of April)
References

Model simulations

- **WRF simulation:**
 - Forecast model: v 2.2 of the WRF regional model (Skamarok et al., 2005)
 - Model area: 58.5 N / 80 W / 58.5 S / 80 E
 - Horizontal res: 3km at equator to 1.7km at N and S boundaries
 - 52 vertical levels, up to 28 hPa
 - Clouds explicitly resolved
 - Simulation is a 6-30 h forecast – spin up period 6 h.
 - Initialization: 15 Aug at 18 UTC from 1 deg analyses from GDAS

- **ECMWF simulation:**
 - Forecast model: cycle 36r4 of global IFS model
 - Run at T2047 (~10 km nominal horizontal), 91 levels up to 0.01 hPa
 - Cloud parameterization (Tiedtke, 1989 and 1993)
 - Simulation is a 24-48 h forecast – spin up period 24 h
 - Initialization: 15 Aug at 00 UTC, cycle 30r1
SimulAMV2 – Cloud Structures
Simulated images: WV 7.3 µm

- Images from both models appear realistic.
- But some characteristics to take into account

- WRF more detailed spatial structure (higher horizontal resolution).
- WRF apparent spin-up during first 9-12 h.
- Better representation of ice-clouds in WRF images.
Simulated images: cloud structures

- Cold tail: WRF similar to OBS (ice clouds)
- WRF spin-up during first ~9 h.

Temporal evolution of BT histograms – IR 10.8
AMVs from simulated IR - spatial error correlations

- For comparison with results from real data, the Second Order Autoregressive (SOAR) function has been fitted:

\[R(r) = R_0 \left(1 + \frac{r}{L}\right) e^{-\frac{r}{L}} \]

with length scale \(L \) and intercept \(R_0 \).

- There is reasonable agreement between the estimates of \(L \) from the simulated data and past results for real data:

<table>
<thead>
<tr>
<th>Region</th>
<th>Simulated data</th>
<th>Real data (from Bormann et al 2003)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extra-tropics</td>
<td>140-280 km</td>
<td>150-260 km</td>
</tr>
<tr>
<td>Tropics</td>
<td>310-490 km</td>
<td>260-370 km</td>
</tr>
</tbody>
</table>

- But: values for \(\sigma_0 \) are much larger for simulated data.
Vertical error correlations

- IR and WV winds, all levels combined.

- Error correlations reach 0.2 for pressure differences between 100 and 200 hPa.