IMPACT STUDIES OF AMVS AND SCATTEROMETER IN THE JMA GLOBAL OPERATIONAL NWP SYSTEM

Koji Yamashita*1, Toshiyuki Ishibashi*2
1: Japan Meteorological Agency
2: Meteorological Research Institute
Outline

• Introduction

• AMV Satellite Status update for NWP use of JMA

• OSEs of AMVs and Scatterometer winds
  – Global Experiments Specification
  – Experimental design
  – Results of OSE
  – Adjoint sensitivity diagnostics in 2010

• Summary
Introduction

• To learn more about the influence of AMVs and scatterometer winds on the different NWP assimilation systems recommended from IWW10
  – Make a presentation from J. Cotton and C. Payan as “Coordinated study of NWP winds impact: Common features and differences”

• To report about JMA’s independent impact studies of AMVs and scatterometer winds
AMV Satellite Status update for NWP use of JMA

NESDIS and CIMSS MODIS polar winds (Terra and Aqua) Direct broadcast MODIS polar winds (Terra and Aqua) from 11 Feb. 2011

 NESDIS and CIMSS MODIS polar winds (Terra and Aqua) Direct broadcast MODIS polar winds (Terra and Aqua) from 11 Feb. 2011

• In near future plan
  – AVHRR polar winds from NOAA 15-19 and Metop
  – Leogeo winds

※ 28 JUL 2009 Assimilation of Metop-A/ASCAT data started.
OSES OF AMVS AND SCATTEROMETER WINDS
## Global Experiments Specification

**GSM** (Hydrostatic Global Spectral Model)
Same as routine except horizontal rez. (CNTL)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal rez./ Vertical rez.</td>
<td>60 km / 60 level</td>
</tr>
<tr>
<td>Top</td>
<td>0.1 hPa</td>
</tr>
<tr>
<td>Inner-loop model rez. for DA</td>
<td>120 km</td>
</tr>
<tr>
<td>Assimilation method</td>
<td>4D-Var</td>
</tr>
<tr>
<td>Time windows</td>
<td>6 hour</td>
</tr>
<tr>
<td>Forecasts</td>
<td>216 hours (only 12UTC)</td>
</tr>
<tr>
<td>Used AMVs</td>
<td>MTSAT-1R, GOES and Meteosat IR, VIS and WV</td>
</tr>
<tr>
<td></td>
<td>(cloudy) AMVs; MODIS Terra and Aqua (IR and</td>
</tr>
<tr>
<td></td>
<td>WV)</td>
</tr>
<tr>
<td>Other satellite data</td>
<td>Clear-sky radiance from MTSAT, Meteosat,</td>
</tr>
<tr>
<td></td>
<td>GOES, 6 AMSU-As, 5 AMSU-B/MHSs, AMSR-E,</td>
</tr>
<tr>
<td></td>
<td>TMI, SSMIS; scatterometer winds from ASCAT;</td>
</tr>
<tr>
<td></td>
<td>Metop and COSMIC GPSRO</td>
</tr>
</tbody>
</table>
Experimental design

- Four experiments were performed in each of two seasons to assess the impact of AMVs.

<table>
<thead>
<tr>
<th>NOAMV ( SM ), NOAMV( WN )</th>
<th>CNTL + No all AMVs</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOPLR ( WN )</td>
<td>CNTL + No Polar AMVs</td>
</tr>
<tr>
<td>NOSCAT ( SM )</td>
<td>CNTL + No Scatterometer winds</td>
</tr>
</tbody>
</table>

- Period
  - Atlantic hurricane ( northwest Pacific typhoon ) season in 2010 from 15 August to 30 September
  - Northern Hemisphere (NH) Winter season in 2010/11 from 1 December to 15 January

- Adjoint sensitivity diagnostics (Langland and Baker 2004) in January (WN) and August (SM) 2010
NW Pacific typhoon season in 2010 (NOAMV vs CNTL)

Mean Z500 analyzed fields (NOAMV-CNTL)

U-component winds against sonde

Mean 8(TCs) Track Forecast Error

Number of samples

Positional error (km)

Forecast time (hours)

Anomaly correlation for Z500

Count

Forecast Bme (hours)

Number of samples
NW Pacific typhoon season in 2010 (NOSCAT vs CNTL)

Mean Z500 analyzed fields (NOSCAT-CNTL)

U-component winds against sonde obvs.

BIAS  \( \text{RMSE} \)

SH

Anomaly correlation for Z500

Mean 8 TCs Track Forecast Error

Positional error (km)

Number of samples

Forecast time (hours)

Count
Adjoint sensitivity diagnostics in 2010

15-hour forecast error contribution ratio (%). Positive values correspond to a decrease in the dry energy norm of forecast error.
(Condition: dry total energy norm and global NWP system with wet process)

• Best reduction of forecast error is also observed from geostationary satellite AMVs (AMV_GEO) per one observation.
Summary

• Four experiments were performed in each of two seasons to assess the impact of AMVs.

• Assimilation
  – AMVs of geostationary satellites
    • Positive impacts mainly on the mean wind analysis at the range of 500-100 hPa (reduction of RMSE against sonde observations)
  – Polar AMVs (not shown figures)
    • Positive impacts on the mean wind analysis at the range of 500-100 hPa (reduction of BIAS against sonde observation)
  – Scatterometer winds
    • Slight positive impacts on the mean wind analysis below 850 hPa (improvement of BIAS against sonde observations), especially over the southern hemisphere
Summary

• Forecast
  – Significant positive impact on the forecast skills for AMVs in NW Pacific typhoon season
  – Slight positive impacts on the forecast skills mainly in the southern hemisphere for scatterometer winds
  – Slight improvement in mean TC track forecast errors for AMVs and scatterometer winds

• Adjoint sensitivity diagnostics
  – Best reduction of forecast error by AMVs against one observation in the JMA operational NWP system
Thank you for your attention.
NW Pacific typhoon season in 2010 (NOAMV vs CNTL)

- Impacts in the south end of two anticyclones
- No AMVs bring weak anticyclones.

Mean 200 hPa stream function and anomaly in September 2010

CHI200 [10^6 m^2/s] TEST - CNTL

Vector difference of mean wind analysis at 200hPa (NOAMV-CNTL)

Mean 200 hPa velocity potential (NOAMV- CNTL)
NH Winter season in 2010/11 (NOAMV vs CNTL)

Vector difference of mean wind analysis at 200hPa (NOAMV-CNTL)

Mean 200 hPa stream function and anomaly in December 2010

- Impacts in the south-west end of two anticyclones
- No AMVs bring weak anticyclones.
NH Winter season in 2010/11 (NOPLR vs CNTL)

Mean Z500 analyzed fields (NOPLR-CNTL)

RMSE of forecast errors (CNTL-NOPLR)

U-component winds against sonde obs.

BIAS SH RMSE

Anl. NOPLR Anl. CNTL Guess NOPLR Guess CNTL

Anomaly correlation for Z500
NH Winter season in 2010/11 (NOAMV vs CNTL)

Mean Z500 analyzed fields (NOAMV-CNTL)

U-component winds against sonde obs.

RMSE of forecast errors (CNTL-NOAMV)

Anomaly correlation for Z500