## Global AVHRR Winds from Dual-Metop Operations

Ken Holmlund
Meteorological Operations Division

+ Greg Dew
Kenneth.holmlund@eumetsat.int


## Content of talk:

Introduction
Justification for Global AVHRR Winds
Basic Approach
Conclusions

## Why now

AVHRR has been flying for a long time, but

Now, with Metop-B coming along

Global full resolution AVHRR data from two spacecrafts in the same orbit plane will become available for the first time!
Optimal? separation of almost half an orbit 48.92 mins ensures half a swath overlap or better!
Fixed local equatorial crossing time (+/- 3 mins)


## More details on derivation

Work started a long time ago!
First step enabling wind derivation based on image pairs and not triplets!
Current operational EUMETSAT AVHRR winds adapted for to spacecrafts

- Based on image pairs, not triplets!
- IASI height assignment
- CCC method included
-     + all the other goodies (See next talk by Greg Dew)


## But really, it is all simple



## Two main benefits

1) Filling any potential gaps between GEO and LEO AMVs, currently only MISR provides a solution
2) Excellent tool for cross validation of GEO and LEO AMVs

## Cưrrent GEO Coverage

Statistics for windspeed from GEOS-15/AMV_IR_ch1
Level $=0.00-400.00 \mathrm{hPa}$ [time step $=6$ hours ]
NUMBER OF OBSERVATIONS, QI_GE_80
EXP $=0001$, Data Period $=2011121121-2012013103$ Min: 1.000 Max: 810.000 Mean: 256.085


## Polar orbiting coverage

Statistics for windspeed from NOAA-18/AMV_IR
Level $=0.00-400.00 \mathrm{hPa}$ [time step $=6$ hours ] NUMBER OF OBSERVATIONS, QI GE 80 EXP $=0001$, Data Period $=2011121121-2012013103$ Min: 1.000 Max: 225.000 Mean: 42.224

Statistics for windspeed from TERRA/AMV_WV_CLOUDY (Global) Level $=0.00-400.00 \mathrm{hPa}$ [time step $=6$ hours] NUMBER OF OBSERVATIONS, QI_GE_80 EXP = 0001, Data Period = 2011121121-2012013103 Min: 1.000 Max: 467.000 Mean: 115.925


## EUMEISAT operational vs prototype

AMV distribution operational QI > 80 (total: 11144)-200804130000-200804140000


AMV distribution prototype QI > 60 (total: 11161) - 200804130000-200804140000


## Current Polar Wind Coverage



Statistics for windspeed from NOAA-18/AMV_IR MEAN OBSERVATION [m/s ] (QI_GE_80) Data Period $=2011-12-2721-2012-01-2809$ EXP - 0001, Level - $0.00-400.00 \mathrm{hPa}$
Min: 7.406 Max: 74.216 Mean: 28.916
71.00 68.00
65.00
62.00
59.00
56.00
53.00
50.00
47.00
44.00
41.00
38.00
35.00
32.00
29.00
26.00
23.00
20.00
17.00
14.00
11.00
8.00

## Cross validation <br>  - see work on MISR validation by Lonitz and Horvath



## But is this realistic...i.e. are the winds good enough forecast consistency of reprocessed winds



## First guess departures by ECMWF

Statistics for windspeed from METOP-A/AMV_IR
Level $=0.00-400.00 \mathrm{hPa}$ [time step $=6$ hours ] MEAN FIRST GUESS DEPARTURE (OBS-FG) [ $\mathrm{m} / \mathrm{s}$ ], QI_GE_ 80 EXP $=0001$, Data Period $=2011123121-2012022003$ Min: -14.520 Max: 17.467 Mean: 0.439


Statistics for windspeed from NOAA-18/AMV_IR
Level $=0.00-400.00 \mathrm{hPa}$ [time step $=6$ hours ] MEAN FIRST GUESS DEPARTURE (OBS-FG) [ $\mathrm{m} / \mathrm{s}$ ], QL_GE_ 80

EXP $=0001$, Data Period $=2011123121-2012022003$
Min: -14.503 Max: 16.017 Mean: -0.042


## Not a beauty contest!!

Statistics for windspeed from NOAA-18/AMV_IR
Level $=0.00-400.00 \mathrm{hPa}$, QI_GE_ 80 data $[$ time step $=6$ hours ]
Area: lon_w= 0.0, Ion_e= 360.0 , lat_s= 60.0 , lat_n= 90.0 (over All_surfaces) EXP $=0001$

Statistics for windspeed from METOP-A/AMV_IR
Level $=0.00-400.00 \mathrm{hPa}$, QI_GE_80 data [ time step $=6$ hours ] Area: lon_w= 0.0 , lon_ $\theta=360.0$, lat_s=60.0, lat_ $\mathrm{n}=90.0$ (over All_surfaces) $\mathrm{EXP}=0001$









## Status and plans

BIG PLAN: Launch Metop-1 aka Metop-B successfully!

Adaptations for dual-metop operations completed, but not tested
Final adaptations to be done during commissioning
Early test data second half of 2012

Lets hope for a successful launch!

