Study of relationship between spatial and temporal image resolutions for AMV Derivation of Next Generation Satellites

Kazuki Shimoji, Masanori Hayashi
Meteorological Satellite Center
Japan Meteorological Agency
Motivation of this study

1. JMA/MSC plans to produce AMV with high time and fine space resolution from the Japanese follow-on satellite Himawari-8.

2. For generating high-resolution AMV from Himawari-8, relationship of target box size (corresponds to space scale of meteorological phenomena) and time intervals of imagery (corresponds to time scale of meteorological phenomena) should be studied.

We consider only tracking procedure, because it becomes hard to search where the problem comes from, when we treat another procedure such as height assignment together.
Difficulty of using small target box size

Feature of small scale phenomena vanishes in a short time

Feature of large scale phenomena is consistent for long period

Lifetime of cloud feature is correlating with its size
Difficulty of using small target box size

Cloud system deforms as time goes by

Easy to track

Unable to track

Appropriate “target size” determined if “observation intervals” determined, and vice-versa
Method to find the most similar pattern from follow-through image

Maximum cross-correlation coefficient can be used as a similarity measure of a pair of “pattern” point to give maximum correlation coefficient = best match point
Study of Relationship b/w Box Size and Time Interval

Method to evaluate the relationship:

• Two satellite images of different observation times prepared

• Tabularization of maximum correlation PDFs derived from many pairs of target box sizes and time intervals

• Corresponding background (noise) maximum correlation PDFs are also computed from 3 days separated imagery for considering effect of coincidental match

Dataset

Rapid-scan MTSAT-1R image : September 2011 (daytime only)
Target box size: 5,7,9,11,13,15,17,19,21,23,25,27,29,31 and 33 pix
Time interval of imagery : 5,10,15,20,25 and 30 minutes
Case Analysis to Cross-correlation Coefficients in Case of \textit{Short Time Interval}

cloud feature conserved, coincidental match suppressed

The Kullback–Leibler divergence (KLD) is a measure of difference between two probability density functions (PDFs) P_0 and P_1:

$$\text{KLD} = \int_{-\infty}^{\infty} P_0(x) \log \left(\frac{P_0(x)}{P_1(x)} \right) dx$$

For the given case, the target size is 5, the time interval is 5 minutes, and the KLD is calculated to be 2.99293.

PDF of maximum correlation from 3 days separated image

PDF of maximum correlation from AMV computation

difference of P_0 and P_1 is large
Case Analysis to Cross-correlation Coefficients in Case of Long Time Interval

Cloud feature vanished, coincidental match gained ground.

Kullback–Leibler divergence

\[
KLD = \int_{-\infty}^{\infty} P_0(x) \log \left(\frac{P_0(x)}{P_1(x)} \right) dx
\]

KLD is the difference between two PDFs.

- **targetsize=5**
- **timeinterval=30min.**

KLD decreased with increasing of contamination by coincidental match.

- KLD = 0.155423
- Difference of \(P_0 \) and \(P_1 \) is small

P0 (foreground)

P1 (background)
table of cross correlation PDF computed from many pairs of target Box sizes and time

- Target box size (from 5 to 33)
- Time interval of images (from 5 to 30min.)

Increase of contamination by coincidental match
Intersection with “background” higher
Table of KLDs computed from many pairs of target Box sizes and time intervals

- Tracking accuracy degraded by:
 1. Decreasing of target box size
 2. Prolonging time interval

Cloud feature alive, coincidental match suppressed
KLD high, easy to track
KLD low, difficult to track
Cloud feature lost, coincidental match dominant

Target box size (from 5 to 33)
Time interval of images (from 5 to 30min.)
Table of **maximum correlation** computed from many pairs of target Box sizes and time intervals.

- Correlation higher as smaller time interval
- Easier to trace cloud system
- Chance to increase # of AMVs
- Chance to use smaller target box
- Cloud feature lost, coincidental match dominant

Chance to trace smaller system
Experiment to resize target box size for MTSAT-1R rapid-scan AMV

MTSAT operational AMV
16x16, 15min.

MTSAT operational AMV
24x24, 30min.

MTSAT Rapid-Scan AMV
Ex.1: 16x16, 5 min
Ex.2: 10x10, 5min

appropriate to track
difficult to track
Mean of vector difference between AMV and GPV wind (QI>0.8)

CNTL
IR1 low-level AMVs
Target box size 16pix
Mean of vector difference between AMV and GPV wind (QI>0.8)

TEST
IR1 low-level AMVs
Target box size 10pix
Change of AMVs accuracy by resizing target box size

Probability Distribution Function
for norm of wind vector difference against First Guess wind

- **Effect of resizing target box size from 16 to 10**
 - Number of targets increase by a factor of 2.56 in case of using optimal target alignment
 - AMV quality not changed significantly
 - AMV number decreased to 75%
 - Expected increase of number is a factor of 1.92 (0.75x2.56) after implementation of optimal target alignment (not implemented on current system)
Summary

1. JMA/MSC is developing rapid-scan high resolution AMV for Japanese follow-on satellite “Himawari-8”

2. Rapid-scan high-resolution AMV needs appropriate a pair of observation interval and target box size.

3. “cloud tracking limit” which corresponds to cloud life cycle achieved from relationships of “KDF” or “maximum correlation coefficient”, “time interval” and “target box size” by using 90 pairs of different sizes and different intervals using MTSAT-1R rapid-scan IR imagery.

4. Comparison experiment using target box sizes 10x10 and 16x16 was examined for checking a part of cloud tracking limit”. As a result, AMVs from 10x10 target box size show comparable quality from 16x16. this result also suggests that resizing target box size from 16x16 to 10x10 can increase number of AMV without debasement of quality.
Thank you for your attention!
Backup
Development to high-resolution AMV

Optimal distribution of AMV derivation points without correlated error

High-resolution AMV computed using small target box

low density wind vectors

high density wind vectors
Rapid-Scan AMVs around Typhoon

Enlargement of data coverage near typhoon center by using small target box size even without optimal target alignment

Accumulated AMVs ($Qi > 0.8$) around center of typhoon “ROKE”
From 9 Sep 2011 to 24 Sep 2011

Target size: 16x16
28170 vectors

Target size: 10x10
22576 vectors
Summary of Motivation

JMA/MSC develops high-resolution AMV.

For high resolution AMV products...

1. Small target box should be used.
2. But feature of small target disappear immediately.
3. Therefore, next observation should be done before target feature disappear.

Relationship of lifetime and size of cloud feature should be investigated.
Study of Relationship b/w Box Size and Time Interval using MTSAT Rapid Scan Images

Method to evaluate the relationship:
• Two satellite images of different observation times prepared
• Cross-correlation between cloud features in boxes of the two images computed to evaluate the lifetime of cloud system

Highly correlated to A and trackable

Less correlated to A difficult to be tracked
Table of mean of maximum correlation computed from many pairs of target Box sizes and time intervals

Interpretation:
correlation decreasing with time, cloud feature is still changing

Interpretation:
correlation stop to change with time, cloud feature already disappeared

safe

unsafe
Introduction to Atmospheric Motion Vector

- Atmospheric Motion Vector products is derived from successive satellite imagery.
- Wind vectors are routinely utilized for NWP assimilation.

red: IR high-level winds
blue: IR low-level winds
CONTENTS

• Motivation
• Method
• Experiment
• Summary