Recent Status and Development of Atmospheric Motion Vector at JMA

Masahiro HAYASHI and Kazuki SHIMOJI
Meteorological Satellite Center
Japan Meteorological Agency

IWW 11th, The University of Auckland, New Zealand, 20 Feb. 2012
Today’s talk

- Operation Updates on JMA AMVs since 10th IWW
 - MTSAT-2 AMVs Dissemination started (Jul. 2010)
 - Hourly AMV Dissemination started (Mar. 2011)

- Developments achieved
 - MTSAT-1R Rapid-Scan Operation and Rapid-Scan AMVs
 - AMV Climate Dataset

- On going activities and plans
 - Development of Height Assignment Method for Low-Level Wind
 - Development of High Res. Land/Sea Table for Wider Generation of Low Level Winds
 - Future Development and NWC SAF Software

- Summary
JMA AMVs Outline after 10th IWW

Past operation
- **2010**: MTSAT-1R Operational, MTSAT-2 Standby
- **2011**: Switchover MTSAT-1R to MTSAT-2 (1 Jul.), Hourly AMV dissemination Start (3 Mar.), Rapid-Scan (RS) operation from Jun. to Sep.
- **2012**: MTSAT-2 Operational, Himawari-8 launched

Future operation plan
- **2012**: Switchover MTSAT-2 to Himawari-8
- **2013**: Himawari-8 Operational
- **2014**: Rapid-Scan (RS) operation
- **2015**: MTSAT-2 Standby
MTSAT-2 AMV Provision Started July 2010

In place of MTSAT-1R AMVs, MTSAT-2 AMVs are disseminated from 00 UTC 11 July 2010

Bias and RMSVD of IR1 high-level (over 400hPa) AMV against Sonde

QI > 0.85

Bias and RMSVD of IR1 high-level (over 400hPa) AMV against Sonde

QI > 0.85

SRFs of MTSAT-2 and MTSAT-1R are comparable

Response functions

MTSAT-1R

MTSAT-2

Accuracy of AMVs are also comparable between the two satellites

Collocated IR1 high-level winds (Jun. 2010)

QI (without FG) > 0.85
MTSAT Hourly AMVs Dissemination

JMA started to disseminate hourly-derived AMVs via GTS since 02 UTC 3 Mar. 2011

<table>
<thead>
<tr>
<th>AMV type</th>
<th>Level of height *</th>
<th>Time (UTC)</th>
<th>Image sector</th>
<th>Image interval (minutes)</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR1</td>
<td>High, middle, low</td>
<td>00, 06, 12, 18</td>
<td>Full disk</td>
<td>15</td>
<td>BUFR via GTS</td>
</tr>
<tr>
<td></td>
<td>High, middle, low</td>
<td>03, 09, 15, 21</td>
<td></td>
<td></td>
<td>BUFR via GTS</td>
</tr>
<tr>
<td></td>
<td>High, middle, low</td>
<td>02, 04, 05, 08, 10, 11, 14, 16, 17, 20, 22, 23</td>
<td>Northern Hemisphere</td>
<td>30</td>
<td>BUFR via GTS</td>
</tr>
<tr>
<td></td>
<td>High, middle, low</td>
<td>01, 07, 13, 19</td>
<td>Northern Hemisphere</td>
<td>60</td>
<td>BUFR via GTS</td>
</tr>
<tr>
<td></td>
<td>High, middle, low</td>
<td>01, 02, 03, 04, 05, 07, 08, 09, 10, 11, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23</td>
<td>Southern Hemisphere</td>
<td>60</td>
<td>BUFR via GTS</td>
</tr>
<tr>
<td>WV</td>
<td>High, middle</td>
<td>00, 06, 12, 18</td>
<td>Full disk</td>
<td>15</td>
<td>BUFR via GTS</td>
</tr>
<tr>
<td></td>
<td>High, middle</td>
<td>03, 09, 15, 21</td>
<td></td>
<td></td>
<td>BUFR via GTS</td>
</tr>
<tr>
<td></td>
<td>High, middle</td>
<td>02, 04, 05, 08, 10, 11, 14, 16, 17, 20, 22, 23</td>
<td>Northern Hemisphere</td>
<td>30</td>
<td>BUFR via GTS</td>
</tr>
<tr>
<td></td>
<td>High, middle</td>
<td>01, 07, 13, 19</td>
<td>Northern Hemisphere</td>
<td>60</td>
<td>BUFR via GTS</td>
</tr>
<tr>
<td></td>
<td>High, middle</td>
<td>01, 02, 03, 04, 05, 07, 08, 09, 10, 11, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23</td>
<td>Southern Hemisphere</td>
<td>60</td>
<td>BUFR via GTS</td>
</tr>
<tr>
<td>VIS</td>
<td>Low</td>
<td>00, 06</td>
<td>Full disk</td>
<td>15</td>
<td>BUFR via GTS</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>03, 09, 21</td>
<td>Northern Hemisphere</td>
<td>30</td>
<td>BUFR via GTS</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>02, 04, 05, 08, 22, 23</td>
<td>Northern Hemisphere</td>
<td>30</td>
<td>BUFR via GTS</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>01, 07</td>
<td>Northern Hemisphere</td>
<td>60</td>
<td>BUFR via GTS</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>01, 02, 03, 04, 05, 07, 08, 09, 10, 11, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23</td>
<td>Southern Hemisphere</td>
<td>60</td>
<td>BUFR via GTS</td>
</tr>
<tr>
<td>IR4</td>
<td>Low</td>
<td>12, 18</td>
<td>Full disk</td>
<td>15</td>
<td>Internal use only</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>08-11, 14-17, 20-23</td>
<td>Northern Hemisphere</td>
<td>30</td>
<td>Internal use only</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>07, 13, 19</td>
<td>Northern Hemisphere</td>
<td>60</td>
<td>Internal use only</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>09, 10, 11, 13, 14, 15, 16, 17, 19, 20</td>
<td>Southern Hemisphere</td>
<td>60</td>
<td>Internal use only</td>
</tr>
</tbody>
</table>

* High: above 400hPa
 Middle: 400-700hPa
 Low: 700-1000hPa

Before hourly AMVs dissemination start

+ After hourly AMVs dissemination start
Quality of Hourly AMVs

Monthly stats (Feb. 2011) for MTSAT-2 IR1 high-level winds speed bias against JMA’s global model FG

- Hourly AMVs contribute to increase the number of data significantly
- The accuracy of the hourly AMVs are almost comparable with 6-hourly AMVs. But slight degradation is seen

QI > 0.8
MTSAT-1R Rapid-Scan Operation

Normal Operation
(about 30 min for Full Disk)

Rapid-Scan Observation
(about 5 min)

The Rapid-scan (RS) operation is conducted every summer

<table>
<thead>
<tr>
<th>Rapid-Scan operation</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Observation Period</td>
<td>Jun. – Sep.</td>
</tr>
<tr>
<td>Observation Time</td>
<td>00 UTC – 09 UTC</td>
</tr>
<tr>
<td>Observation Area</td>
<td>Around Japan</td>
</tr>
<tr>
<td>Time Interval</td>
<td>5 min.</td>
</tr>
</tbody>
</table>
Rapid-Scan AMV for NWP and TC Analysis

MTSAT-2 IR1 low-level winds
ROKE 2011/09/15/00

MTSAT-1R IR1 low-level winds
ROKE 2011/09/15/00/10

QI > 0.8

Continue to afternoon talk...
AMV Climate Dataset
(Contribution to SCOPE-CM and Reanalysis)

- Reprocess of historical AMVs using the latest algorithms has been completed
 - Since 1979 for GMS series, GOES-9 (West Pacific) and MTSAT
 - Contribution to SCOPE-CM Pilot Project
- The AMVs are provided to re-analysis community
 - Positive impacts are recognized in JRA-55

Observation System Experiment for GMS-3 AMVs (Jun. 1990)
by Climate Prediction Division @JMA

Reprocessed AMV shows strong contribution, particularly on southern hemisphere

GMS-3 (Jan. 1990)
IR1 high-level wind Speed bias against model
Development of HA for Low-Level Wind (on going)

- Current Height Assignment (HA) method is based on cloud-base HA method (LeMarshall 1994, Tokuno 1998)

- More development on
 - Introduction of the CCC method to HA of low-level winds
 - Introduction of multi-Gaussian function fitting to histogram of the cloud top heights

The new method will use only tracked clouds pixels rejecting surface pixels
New Height Assignment method for Low-Level Wind

Zonal mean statistics against JMA’s global model FG field for Sep. 2011

Qi > 0.85

MTSAT-2 IRW low-level winds

- The new HA makes the range of AMV height levels wider
- At this moment, RMSVD is a bit large over mid-latitude
- Negative bias is recognized near the zonal jet.
Development of high res. land/sea table for wider generation of low level winds (on going)

Current land/sea table

New land/sea table

Number of AMV increases several % with almost same quality

Qi Histogram for MTSAT-1R IR1 low-level winds for Jan. 2011

Number of derived MTSAT-1R IRW low-level AMV around Japan (Jan. 2011)
JMA is examining to use NWC SAF software for Himawari-8 AMV generating First for *cloud detection and cloud type analysis* using multiple channels

AMV derivation procedure
- Cloud type analysis
- Target selection
- Target tracking
- Cloud height assignment
- Quality control

Method planed to be implemented to next AMV

- **Trying**
 - Multi-channel threshold method based on NWC-SAF software algorithm

- **Trying**
 - Nested tracking method
 - Advanced tracking method for the use of rapid scan images

- **Trying**
 - NWP profile correction associated with observation
 - WV channel
 - CO2 channel
 - Examination of the use of NWC-SAF software algorithm

- **Trying**
 - New quality control for Himawari-8 AMV
Summary

• Operation Updates on MTSAT AMVs since 10th IWW
 – MTSAT-2 AMVs Dissemination from 11 Jul. 2010
 – Hourly AMV Dissemination from 3 Mar. 2011

• Development achieved
 – Rapid-scan operation conducted in every summer
 – Reprocess of historical AMVs using the latest algorithms has been completed

• Ongoing activities
 – New Low-level HA adapted the CCC method is under development
 – Planning to introduce high-resolution land/sea table
 – NWC SAF AMV derivation software is being examining for follow-on satellite AMV
Thank you!
Arigatou Gozai Masu!

Harerun the Mascot Character of JMA
Reference

• Tokuno M., 1998: Improvements in the method to extract operational cloud motion winds and water vapor motion winds of the GMS-5 system, Proc. of the Fourth Int. Winds Workshop, Switzerland, 61-68