Recent Status and Development of Atmospheric Motion Vector at JMA

Masahiro HAYASHI and Kazuki SHIMOJI Meteorological Satellite Center Japan Meteorological Agency

IWW 11th, The University of Auckland, New Zealand, 20 Feb. 2012

Today's talk

- Operation Updates on JMA AMVs since 10th IWW
 MTSAT-2 AMVs Dissemination started (Jul. 2010)
 Hourly AMV Dissemination started (Mar. 2011)
- Developments achieved
 MTSAT-1R Rapid-Scan Operation and Rapid-Scan AMVs
 AMV Climate Dataset
- On going activities and plans
 - Development of Height Assignment Method for Low-Level Wind
 - Development of High Res. Land/Sea Table for Wider Generation of Low Level Winds

Future Development and NWC SAF Software

• Summary

JMA AMVs Outline after 10th IWW

MTSAT-2 AMV Provision Started July 2010

In place of MTSAT-1R AMVs, MTSAT-2 AMVs are disseminated from 00 UTC 11 July 2010

Accuracy of AMVs are also comparable between the two satellites

MTSAT Hourly AMVs Dissemination

JMA started to disseminate hourly-derived AMVs via GTS since 02 UTC 3 Mar. 2011

AMV type	Level of height *	Time (UTC)	Image sector	Image interval (minutes)	Distribution	
ID1	High, middle, low	00, 06, 12, 18	Full disk	15	BUFR via GTS	
IK1 Infrared:	High, middle, low	03, 09, 15, 21	Northern Hemisphere	30	BUFR via GTS	
	High, middle, low	02, 04, 05, 08, 10, 11, 14, 16, 17, 20, 22, 23	Northern Hemisphere	30	BUFR via GTS	
IR (10.8 micrometers)	High, middle, low	01, 07, 13, 19	Northern Hemisphere	60	BUFR via GTS	
	High, middle, low	01, 02, 03, 04, 05, 07, 08, 09, 10, 11, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23	Southern Hemisphere	60	BUFR via GTS	
10/1/	High, middle	00 , 06 , 12 , 18	Full disk	15	BUFR via GTS	
vvv	High, middle	03,09,15,21	Northern Hemisphere	30	BUFR via GTS	
Water Vapor:	High, middle	02, 04, 05, 08, 10, 11, 14, 16, 17, 20, 22, 23	Northern Hemisphere	30	BUFR via GTS	
WV (6.8 micrometers)	High, middle	01, 07, 13, 19	Northern Hemisphere	60	BUFR via GTS	
	High, middle	01, 02, 03, 04, 05, 07, 08, 09, 10, 11, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23	Southern Hemisphere	60	BUFR via GTS	
	Low	00,06	Full disk	15	BUFR via GTS	
V15	Low	03, 09, 21	Northern Hemisphere	30	BUFR via GTS	
Visible:	Low	02, 04, 05, 08, 22, 23	Northern Hemisphere	30	BUFR via GTS	
VIS (0.63 micrometers)	Low	01,07	Northern Hemisphere	60	BUFR via GTS	
	Low	01, 02, 03, 04, 05, 07, 08, 21, 22, 23	Southern Hemisphere	60	BUFR via GTS	
IR4	Low	12,18	Full disk	15	Internal use only	
Short-wave Infrared	Low	08-11, 14-17, 20-23	Northern Hemisphere	30	Internal use only	* Hig
IR4 (3.8 micrometers)	Low	07, 13, 19	Northern Hemisphere	60	Internal use only	Mi
	Low	09, 10, 11, 13, 14, 15, 16, 17, 19, 20	Southern Hemisphere	60	Internal use only	Lov

High: above 400hPa Middle: 400-700hPa Low: 700-1000hPa

Before hourly AMVs dissemination start

After hourly AMVs dissemination start

Quality of Hourly AMVs

Monthly stats (Feb. 2011) forQI > 0.8MTSAT-2 IR1 high-level winds speed bias against JMA's global model FG

MTSAT-1R Rapid-Scan Operation

Normal Operation (about 30 min for Full Disk)

Rapid-Scan Observation (about 5 min)

Rapid-Scan operation		
Observation Period	Jun. – Sep.	
Observation Time	00 UTC – 09 UTC	
Observation Area	Around Japan	
Time Interval	5 min.	

The Rapid-scan (RS) operation is conducted every summer

Rapid-Scan AMV for NWP and TC Analysis

AMV Climate Dataset (Contribution to SCOPE-CM and Reanalysis)

- Reprocess of historical AMVs using the latest algorithms has been completed
 - ✓ Since 1979 for GMS series, GOES-9 (West Pacific) and MTSAT
 - ✓ Contribution to SCOPE-CM Pilot Project
- The AMVs are provided to re-analysis community
 - ✓ Positive impacts are recognized in IRA-55 Observation System Experiment for GMS-3 AMVs (Jun. 1990)

Reprocessed AMV shows strong contribution, particularly on southern hemisphere

for JRA-25 (Previous)

for JRA-55 (New)

GMS-3 (Jan. 1990) IR1 high-level wind Speed bias against model

Development of HA for Low-Level Wind (on going)

0.8

- Current Height Assignment (HA) method is based on cloud-base HA method (LeMarshall 1994, Tokuno 1998)
- More development on
 - ✓ Introduction of the CCC method to HA of low-level winds
 - ✓ Introduction of multi-Gaussian function fitting to histogram of the cloud top heights

The new method will use only tracked clouds pixels rejecting surface pixels

New Height Assignment method for Low-Level Wind

Zonal mean statistics against JMA's global model FG field for Sep. 2011 Qi > 0.85 MTSAT-2 IRW low-level winds

Development of high res. land/sea table for wider generation of low level winds (on going)

-10

-20

-30

40

-50

Number of derived MTSAT-1R IRW low-level AMV around Japan (Jan. 2011)

Number of AMV increases several % with almost same quality

Examining of NWC-SAF software for Himawari-8 AMV

JMA is examining to use NWC SAF software for Himawari-8 AMV generating First for cloud detection and cloud type analysis using multiple channels

Summary

- Operation Updates on MTSAT AMVs since 10th IWW
 - MTSAT-2 AMVs Dissemination from 11 Jul. 2010
 - Hourly AMV Dissemination from 3 Mar. 2011
- Development achieved
 - Rapid-scan operation conducted in every summer
 - Reprocess of historical AMVs using the latest algorithms has been completed
- Ongoing activities
 - New Low-level HA adapted the CCC method is under development
 - Planning to introduce high-resolution land/sea table
 - NWC SAF AMV derivation software is being examining for follow-on satellite AMV

Thank you! Arigatou Gozai Masu!

Harerun the Mascot Character of JMA

Reference

- Le Marshall J., Pescod N., Seaman B., Mills G., and Stewart P., 1994: An Operational System for Generating Cloud Drift Winds in the Australian Region and Their Impact on Numerical Weather Prediction., J. Wea. Forecasting, 9, 361-370
- Tokuno M., 1998: Improvements in the method to extract operational cloud motion winds and water vapor motion winds of the GMS-5 system, Proc. of the Fourth Int. Winds Workshop, Switzerland, 61-68