

Observing system experiments of MTSAT-2 Rapid Scan Atmospheric Motion Vector for T-PARC 2008 using the JMA operational NWP system

Koji Yamashita

Japan Meteorological Agency Kobo.yamashita@met.kishou.go.jp

<u>Outline</u>

- T-PARC 2008
- Global and Meso-scale Experiments Specification
- Experimental design

 Trial of 2-step thinning scheme
- Results of OSE
- Summary and Future plan

THORPEX Pacific Asian Regional Campaign (T-PARC 2008)

- Objectives
 - Research the mechanism of genesis, recurvature and extratropical transition for tropical cyclones in the northwestern Pacific.
 - Assess the effectiveness of <u>Global Interactive</u>
 <u>Forecasting System (GIFS)</u> for tropical cyclones.
 - Improve the performance of <u>numerical weather</u> prediction for tropical cyclones.

Tenth International Winds Workshop THORPEX Pacific Asian Regional Campaign (T-PARC 2008) • International Cooperation

- Project by the Asian, North American and European THORPEX Regional Committees.
- JMA contributed to the provision of forecast sensitivity analysis and special observations.

Aircraft Dropsonde	Upper-Sounding By Observatories	Upper-Sounding By JMA Vessels	MTSAT-2 Rapid-scan
Sep. 11 (36 Dropsondes)	Aug. 19 12UTC – 20 12UTC	Aug. 19 12UTC – 20 12UTC	Sep. 10 12UTC – 13 06UTC
Sep. 17 (29)	Sep. 10 12UTC – 12 12UTC	Sep. 10 12UTC – 14 06UTC	Sep. 17 12UTC – 18 12UTC
Sep. 28 (21)	Sep. 27 12UTC – 28 12UTC	Sep. 27 12UTC – 28 00UTC	Sep. 27 12UTC – 28 12UTC

<u>Global and Meso-scale</u> <u>Experiments Specification</u>

	GSM Hydrostatic Global Spectral Model	MSM Non-hydrostatic Meso- scale Model		
Horizontal rez./ Vertical rez.	20 km / 60 level	5 km / 60 level		
Тор	0.1 hPa	21,800 m		
Inner-loop model rez. for DA	80 km	15 km		
Assimilation method	4D-Var	4D-Var		
Time windows	6 hour	3 hour		
Forecasts	84 hours (00,06,12,18UTC)	15 hours (00,06,12,18UTC) 33 hours (03,09,15,21UTC)		
 Target Tropical Cyclone (TC) SINLAKU and Tropical depression (TD) From 18UTC 10/09/2008 to 06UTC 13/09/2008 From 18UTC 17/09/2008 to 12UTC 18/09/2008 				

SINLAKU and TD Track map

February 22 - 26, 2010 KKR Tokyo, Japan

Tenth International Winds Workshop Experimental Design

7

- **TEST** MTSAT-2 rapid scan AMVs are assimilated.
- **CNTL** No MTSAT-2 rapid scan AMVs are assimilated.

Utilization of special

observations	TEST	CNTL
MTSAT-2-RS-AMVs	○ (use)	×
Dropsonde and Special upper sounding (3-hourly)	× (no use)	×
TC BOGUS	×	×
The other observations	Ο	Ο

Trial of 2-step thinning scheme for MTSAT-2 rapid scan AMVs

- Step 1
 - Equal-distance thinning with 200km (one AMV in 2deg. x 2deg. x 100hPa box)
 - One AMV selected per box in the 6 hour time window.
- Step 2
 - Equal-distance thinning with 100km (one AMV in 1deg. x 1deg. x 100hPa box)
 - For MTSAT-2 rapid scan AMVs (IR and WV, 4 or 7 min. intervals)
 - One AMV selected per box in the hourly time window.
 - Small observation error correlation
 - MTSAT-2 Rapid Scan AMVs have as almost same accuracy as MTSAT-1R. Presented by K. Shimoji and S. HOSHINO

⁹ <u>Example of MTSAT-1R AMVs (CNTL) after QC</u> <u>at 300hPa in 17-19UTC 17th September</u>

February 22 - 26, 2010 KKR Tokyo, Japan

<u>Example of the Attended Sour (Ship EST) after 10</u> <u>at 300hPa in 17-19UTC</u>

17th September

Experimental results for GSM-DA

Tenth International Winds Workshop Analysis and First-guess against radiosonde observations

12

 <u>BIAS and RMAE</u> of wind analysis for GSM-DA using MTSAT-2 rapid scan AMVs reduced.

Ex.

U-comp. wind speed BIAS and RMSE, and Z500 difference from 11 to 13 Sep.

Normalized score against initial forecast (FT=0)

 Significantly positive impacts (average ~3%) on three-day GSM forecast in Japan area.

Ex. Forecast Improvement Rate wrt RMSE for 1-3 day forecasts (CNTL-TEST)/CNTL from 11 to 13 Sep. in Japan area.

— Statistically significant

Mean TC Track Forecast Error

• SINLAKU track predictions were worse in the late-forecast time. But TD predictions were better.

Experimental results for MSM-DA

Tenth International Winds Workshop Initial forecasts against radiosonde observations

 RMSE above 500hPa level were reduced, where many MTSAT-2-RS-AMVs were assimilated.

Equitable Threat Score against Precipitation

- There was a improvement of rain in one-day forecasting for precipitation over 1-15 mm per three hours around Japan.
- Ex. Equitable Threat Score against Radar-Rainfall composite precipitation data in Japan <u>both 10-13 and 17-18 September 2008</u> (Init. 03,09,15,21UTC : Error bar : 95% confidence interval)

Tenth International Winds Workshop Mean TC Track Forecast Error

• SINLAKU track predictions were slightly better in the afterrecuvature stage. Another TD predictions were better.

Tenth International Winds Workshop <u>Summary</u>

- OSEs for MTSAT-2 rapid scan AMVs using the global and meso-scale NWP system were conducted.
- The trial of 2-step thinning scheme for MTSAT-2 rapid scan AMVs was performed.
- This scheme contributed to the increase of AMVs in the vicinity of Japan where AMVs data was sparse heretofore.
- BIAS and RMSE of wind analysis in GSM and MSM reduced against radiosonde observations using AMVs.
- This better wind analysis brought the improvement of forecasts in GSM and MSM.
- SINLAKU track predictions were improved or neutral in GSM and MSM except the late-forecast time of GSM.

Future Plan

- We will investigate the reason why SINLAKU track predictions were worse in GSM.
- We will perform more OSEs for MTSAT Rapid Scan AMVs to validate accuracy 2-step thinning scheme.
- Considering usage of the other satellite rapid scan AMVs (METEOSAT-8 etc.)

Thank you for your attention

Back up slide

Mean TC Intensity Forecast Error (GSM)

 SINLAKU intensity predictions were worse in the beginningforecast time in the after-recurvature stage. TD predictions

Tenth International Winds Workshop Mean TC Intensity Forecast Error (MSM)

24

• Mean TC intensity predictions were almost neutral impact.

MTSAT-2 Rapid Scan AMV comparison

IR_HL for T0813 during T-PARC 2008

25

26 **Tenth International Winds Workshop** Case study with initial time of 18UTC 17/09/2008 40 *₹yphoon Forecast Track T0813(D0019) /2008/09/17/18UTC Init -00UTC 12UTC 06.18UT RSS_MTSAT+2_AMV out RSS_MT<u>SAT-2-A</u> Slightly improvement of 18 30° ₹ 45 H ____ 13 鬯 slow bias speed 35 for TC track forecasts 當 28 TC track forecast T=00 130° 140° Track Forecast Error 500 1000 TEST CNT 400 800 Positional Error (km) of Samples 8:008 開1018 300 400 L 200 27 0-04~ (0813) 100 200

0

0

12

24

36

Forecast Time (hour)

48 60 72 84

0

Case study with initial time of 18UTC 17/09/2008

 Impact of MTSAT-2-RS-AMVs in the north or north-west side on 300 – 400 hPa.

February 22 - 26, 2010 KKR Tokyo, Japan

Tenth International Winds Workshop Case study with initial time of 15UTC 11/09/2008 for MSM

