

EXPLORING THE BEHAVIOR OF ATMOSPHERIC MOTION VECTOR (AMV) ERRORS THROUGH SIMULATION STUDIES

Steve Wanzong and Chris Velden

University of Wisconsin - Madison Cooperative Institute for Meteorological Satellite Studies

With contributions from Allen Huang, Mat Gunshor, Jason Otkin, Tom Greenwald Jamie Daniels (NOAA/NESDIS) Wayne Bresky (IM Systems Group, Inc.)

> Tenth International Winds Workshop Tokyo, Japan 22 - 26 February 2010

Study Content

- Motivation
- Simulated GOES-R ABI Data Methodology
- Simulated ABI AMVs
- Analysis Strategy (Imposed Noise Effects)
- Comparison to WRF Model Wind Fields
- Summary

Study Motivation

GOES-R Advanced Baseline Imager (ABI) -- Expected Launch in ~2017What effect would imposed noise at spec, and over-spec, have on the
derived AMV product?ABICurrent GOES Imager

Spectral coverage 16 bands 5 bands **Spatial resolution** 0.64 µm Visible 0.5 km Approx. 1 km Other Visible/near-IR 1.0 km n/a Approx. 4 km Bands (>2 μ m) 2 km **Spatial coverage** Full disk 4 per hour Scheduled (3 hrly) CONUS 12 per hour ~4 per hour Mesoscale Every 30 sec n/a

Yes

Visible (reflective bands) On-orbit calibration

No

ABI Simulations - Methodology

- Employ the high resolution Weather Research and Forecasting (WRF) mesoscale model to generate simulated atmospheres.
- Calculate Top of Atmosphere (TOA) infrared radiances from the WRF model simulations using CRTM and SOI for ABI bands 7-16 (LW Infrared).
- Calculate TOA reflectances from the WRF model simulations using CRTM and SOI for ABI bands 1-6 (Visible/near-Infrared bands).
- Use automated feature-tracking software to derive AMVs from the simulated fields.

ABI bands via WRF simulation

ABI band data for 2005 June 04 22:00 UTC

GOES-R ABI – CONUS Coverage

Simulated GOES-R ABI

Band 14: 11.2 µm

Simulated GOES-R ABI

Band 08: 6.19 µm

GOES-12 Imager

Band 04: 10.7 µm

GOES-12 Imager

Band 03: 6.5 µm

Simulated AMVs: Retrieval and Analysis Strategy

- 1. Obtain a set of 3 precisely calibrated, navigated and coregistered simulated images from the WRF model output for selected spectral channels ("pure" dataset = baseline "truth")
- 2. Employ the CIMSS/NESDIS automated AMV derivation algorithm to target, height assign, track, and QC AMV fields from these simulated images
- 3. Redo 1) above, except with introduced noise effects that represent proposed GOES-R satellite specs, and 3X specs. The noise includes striping, calibration and navigation offsets
- 4. Redo 2) above for each imposed noise AMV sample
- 5. Perform a quantitative error analysis on the resultant AMV fields using an objective toolkit called GRAFIIR, to deduce the effects of the imposed instrument noise on the derived AMV products.

Imposed ABI Navigation Error -Methodology

- The GOES-R PORD specification for navigation error is +/- 21 microradians (0.75 km).
- Each pixel is given a random compass direction and a random normally distributed (about 0) shift the equivalent of 21 microradians.
- New pixel positions are generated using the random shift and random direction.
- The radiances are then linearly interpolated to these new positions from the original pixel locations.
- Second experiment: 3X Spec

GOES-R ABI – NavError (3Xspec)

IR-W AMVs - 5 minute time step

Yellow AMVs – "truth" Blue AMVs -- NavError3x

Simulated AMV Analysis Tool

<u>GOES-R</u> <u>A</u>nalysis <u>F</u>acility for <u>Instrument Impacts</u> on <u>R</u>equirements

GOES-R ABI Simulated AMV Comparison Metrics

All AMVs are QI>80, and compared against WRF model winds

$$MVD = \frac{1}{N} \sum_{i=1}^{N} (VD_i)$$

$$SD = \sqrt{\frac{1}{N} \sum_{i=1}^{N} ((VD_i) - (MVD))^2}$$

Where:

$$(VD)_i = \sqrt{(U_i - U_r)^2 + (V_i - V_r)^2}$$

 U_i and $V_i \rightarrow AMV$ U_r and $V_r \rightarrow "Truth"$

GOES-R ABI - Comparison Statistics AMVs Derived from ABI Simulated Imagery vs. WRF Model Winds

CIMSS

GOES-R ABI - Comparison Statistics AMVs derived from ABI Simulated Imagery vs. WRF Model Winds

CIMSS

Imposed ABI Striping Error -Methodology

- The GOES-R PORD spec for striping error is that it should be less than the spec instrument noise.
- Assume a detector array (100 high) has 1 line simulated to be "bad".
- Every 100th line has striping error applied by adding a radiance offset equal to the spec noise.
- Second experiment with 3X spec.

GOES-R ABI – Striping3x

Temperature difference between "truth" and 3x Striping Green is zero difference. Blue stripes are only observed difference.

GOES-R ABI – Striping3x

15 minute time step

Clear sky water vapor tracking

Baseline (no striping) AMVs Band 08 (6.19 µm) Striping3x Band 08 AMVs

GOES-R ABI – Striping3x

15 minute time step

Clear sky water vapor tracking

Baseline (no striping) AMVs Band 08 (6.19 µm) Striping3x Band 08 AMVs White areas -- tracking striping

GOES-R ABI - Comparison Statistics AMVs derived from ABI Simulated Imagery vs. WRF Model Winds

CIMSS

GOES-R ABI - Comparison Statistics AMVs derived from ABI Simulated Imagery vs. WRF Model Winds

сімзз

Simulated Katrina

15-Minute Time Step15x15 Target Box Size2 km Resolution

5-Minute Time Step15x15 Target Box Size2 km Resolution

Simulated Katrina

15-Minute Time Step15x15 Target Box Size4 km Resolution

15-Minute Time Step15x15 Target Box Size2 km Resolution

Summary

- Simulated ABI data produced from WRF model TOA radiances is an effective way to study the potential effects of various 'noise' sources and processing choices on AMVs.
- Unaltered radiance fields were used as the baseline ("truth") AMV product.
- Imposed navigation/registration errors have the greatest negative impact on IR and Visible AMVs compared to baseline.
- Striping effects are troublesome for clear sky water vapor AMVs.
- The above findings are effectively quantified using the GRAFIIR data analysis tool.

Thank You

Backups