Operational Use of Scatterometer Winds at JMA

Masaya Takahashi

Numerical Prediction Division, Japan Meteorological Agency (JMA)

10th International Winds Workshop, Tokyo, 26 February 2010
JMA’s Numerical Weather Prediction models
 - Status of NWP models
 - History and use of scatterometer winds

Ongoing development
 - Observing System Experiment of bias corrected ASCAT data assimilation (DA) in a global NWP model

Summary
Status of JMA’s operational NWP models

<table>
<thead>
<tr>
<th>Model</th>
<th>Global Model (GSM)</th>
<th>Mesoscale Model (MSM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution H/V (top height)</td>
<td>T959 (20km) / T159 (0.1hPa)</td>
<td>5km / 50 (21.8km)</td>
</tr>
<tr>
<td>Forecast range (Initial time)</td>
<td>84h (00, 06, 18UTC) 216h (12UTC)</td>
<td>15h (00, 06, 12, 18UTC) 33h (03, 09, 15, 21UTC)</td>
</tr>
<tr>
<td>Target</td>
<td>1~7 day forecast Aeronautical forecast</td>
<td>Disaster prevention information</td>
</tr>
<tr>
<td>Data Assimilation (outer/inner loop)</td>
<td>4D-Var (T959/T159 or 20km/80km)</td>
<td>4D-Var (5 / 15km)</td>
</tr>
</tbody>
</table>
History of scatterometer wind use in NWP at JMA

- Operational use of Metop-A/ASCAT in GSM has started in July 2009.

<table>
<thead>
<tr>
<th>Year</th>
<th>Global Analysis (GSM)</th>
<th>Regional Analysis (MSM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>4D-Var</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3D-OI: Three dimensional optimum interpolation
3D-Var: Four or Three dimensional variational scheme
4D-Var: Four dimensional variational scheme
QuikSCAT / SeaWinds
ERS2 / AMI
Metop-A / ASCAT

(25km grid data provided by JPL)
(25km grid data provided by OSI SAF)
Quality controlled and thinned scatterometer winds are assimilated in 4D-Var DA system.

Quality Control
- Flag check (Rain, Land/Sea, Sea Ice, etc.)
- Ambiguity removal
 • Select the closest wind to JMA’s forecast (implement median filter after nudging)
- Gross error check
 • Reject large \(|\text{Obs.} - \text{Background (forecast)}|\) winds w.r.t. wind speed, direction

Data Thinning (100km x 100km in GSM)
• To reduce calculation cost in 4D-Var.
• Not to introduce spatial observation error correlation which our current data assimilation algorithm does not deal with.
Improvement of forecast against w/o scatterometer run

- Observing System Experiments in low resolution GSM (Fct period: 2008/09/01-09/30).
- Best improvement: ASCAT and QuikSCAT run
- Increase of data coverage provides more reliable analysis field, and it leads to improvement of forecast.

Rate of Improvement = \(\frac{\text{RMSE(w/o Scatterometer)} - \text{RMSE(Test)}}{\text{RMSE(w/o Scatterometer)}} \) [%]

![Graphs showing improvement ratios for different forecast periods and variables](image-url)

<table>
<thead>
<tr>
<th>Variable</th>
<th>SLP</th>
<th>T850</th>
<th>Z500</th>
<th>WS850</th>
<th>WS250</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.H.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S.H.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Sea level pressure)
Ongoing development
- ASCAT wind speed bias correction

Observing System Experiment (OSE) in a global model (GSM)
Wind speed difference between ASCAT and QuikSCAT

- Assimilation of ASCAT winds without any bias correction disimproved forecast scores due to the difference between ASCAT and QuikSCAT.
- In order to start the operational use of ASCAT data promptly, present DA system uses them of which speed are slower than 15m/s.
- End of nominal mission of QuikSCAT last November points to a need for assimilating high speed ASCAT data.

Two dimensional histogram of scatterometer wind speed vs. JMA first guess (2009/01/01 - 01/31).

Anomaly correlations of sea level pressure (average of 31 days in Jan. 2009)
Bias correction of ASCAT wind speed

To research the impacts of consistent scatterometer winds on NWP model, we tried to apply a wind speed bias correction method to ASCAT data under the assumption that QuikSCAT winds (25km grid data provided by JPL) represent the truth.

Step-1:
Make scatterometer wind speed histograms binned by interpolated JMA first guess.

Step-2:
If the mode of ASCAT is different from that of QuikSCAT, adjust to QuikSCAT. In this case, 2m/s is added to ASCAT wind speed.
Bias correction using 6 months (Jan.-Jun. 2009) data

- 0 <= FG < 1 (m/s)
- 1 <= FG < 2
- 2 <= FG < 3
- 3 <= FG < 4
- 4 <= FG < 5

- 5 <= FG < 6
- 6 <= FG < 7
- 7 <= FG < 8
- 8 <= FG < 9

- 10 <= FG < 11
- 11 <= FG < 12
- 12 <= FG < 13
- 13 <= FG < 14

- 15 <= FG < 16
- 16 <= FG < 17
- 17 <= FG < 18
- 18 <= FG < 19

- 20 <= FG < 21
- 21 <= FG < 22
- 22 <= FG < 23
- 23 <= FG < 24

- 24 <= FG < 25

QuikSCAT
ASCAT
Bias corrected
ASCAT
Observing System Experiments in GSM

- Three experiments were carried out in low resolution GSM. (1-month data assimilation and forecast, 2009/08/01-08/31)

<table>
<thead>
<tr>
<th>Expname</th>
<th>ASCAT</th>
<th>QSCAT</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS15</td>
<td>0-15m/s</td>
<td>0-30m/s</td>
<td>same as operational setup</td>
</tr>
<tr>
<td>AS25</td>
<td>0-25m/s</td>
<td>0-30m/s</td>
<td>without bias correction</td>
</tr>
<tr>
<td>AS25BC</td>
<td>0-25m/s</td>
<td>0-30m/s</td>
<td>bias correction to ASCAT is applied</td>
</tr>
</tbody>
</table>

Over the Southern Ocean, AS25 and AS25BC led to about 10% increase in the number of ASCAT winds assimilated than AS15.
2-D wind speed histogram and averaged O-B map

- Wind speed inconsistency between ASCAT and QuikSCAT
- Large difference of O-B is remarkable over tropics and the Southern Ocean.

ASCAT (AS25, w/o bias correction)

- N.H: First Guess (m/s) vs. Scatterometer (m/s), Bias -0.20, Stdv 1.17
- TR.: First Guess (m/s) vs. Scatterometer (m/s), Bias 0.13, Stdv 1.13
- S.H.: First Guess (m/s) vs. Scatterometer (m/s), Bias -0.10, Stdv 1.31

QuikSCAT

- N.H: First Guess (m/s) vs. Scatterometer (m/s), Bias 0.00, Stdv 1.33
- TR.: First Guess (m/s) vs. Scatterometer (m/s), Bias 0.46, Stdv 1.29
- S.H.: First Guess (m/s) vs. Scatterometer (m/s), Bias 0.08, Stdv 1.47

O-B of wind speed

- O-B is shown in a color-coded map with values ranging from -2.0 to 2.0 m/s.
Wind speed difference between ASCAT and QuikSCAT is reduced over the Southern Ocean (although that in tropics still remains).
Impact of high speed ASCAT winds on analysis

- Analysis increment (analysis – first guess) of AS25BC was generally smaller than that of AS25.
- This decrease indicated that stable field was analyzed in AS25BC. On the other hand, the gap of wind speed between ASCAT and QuikSCAT in AS25 made its analysis field somewhat noisy.

<table>
<thead>
<tr>
<th>ASCAT usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS25BC 0-25 (m/s) w/ bias correction</td>
</tr>
<tr>
<td>AS25 0-25 (m/s)</td>
</tr>
</tbody>
</table>

RMS of analysis increment of SLP (AS25, 1-month average).

Impact of high speed ASCAT winds on forecast

- Forecast scores of AS25BC were comparable with AS15, however, AS25 disimproved them.

<table>
<thead>
<tr>
<th>ASCAT usage</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AS25BC</td>
<td>0-25 (m/s) w/ bias correction</td>
</tr>
<tr>
<td>AS25</td>
<td>0-25 (m/s)</td>
</tr>
<tr>
<td>AS15</td>
<td>0-15 (m/s)</td>
</tr>
</tbody>
</table>

Anomaly correlations (average of 31 days)

RMSE difference against radiosonde obs in S.H.
Impact on TC forecast

2009/08/25 18UTC

- TC intensities analyzed in AS25BC and AS25 were slightly stronger than AS15.
- To the contrary of QuikSCAT winds, ASCAT data in AS25 sometimes weakened TCs.
- Analyzed position of TC center in AS25BC was better than that of AS15, and it let to the improvement of TC track forecast.
Averaged positional error of TC track forecasts

- **AS25BC** improved TC track forecast (but not statistically significant).

<table>
<thead>
<tr>
<th>ASCAT usage</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AS25BC</td>
<td>0-25 (m/s) w/ bias correction</td>
</tr>
<tr>
<td>AS25</td>
<td>0-25 (m/s)</td>
</tr>
<tr>
<td>AS15</td>
<td>0-15 (m/s)</td>
</tr>
</tbody>
</table>

North Western Pacific (31 initials).

East Pacific and North Atlantic

- **AS25BC**
- **AS25**
- **AS15**

Error bar: 95% confidence interval.
Summary

◆ JMA has used scatterometer winds in the operational GSM and MSM. In July 2009, we have started to use Metop-A/ASCAT winds in GSM. In 2010, operational use of ASCAT in MSM is planned.

◆ OSEs of bias corrected ASCAT high winds assimilation has shown that it is very important for forecast improvement to use bias-less winds between ASCAT and QuikSCAT. We will start the operational use of high speed ASCAT data in 2010.
Thanks for your attention.
First Guess of Ocean Surface Wind Speed (JMA vs. ECMWF)

2009/01/01 - 01/10 (10 days)

difference of ocean surface wind first guess (ECMWF - JMA)
Data assimilated in global model

- SYNOP, Ship, Buoy
- Radiosondes, Wind Profiler
- Aviation, TC and Australian Bogus
- Scatterometer (SeaWinds, ASCAT)
- Atmospheric Motion Vector
- WV ch radiances of geo. sat. imagers
- T-Sounder (AMUS-A)
- H-Sounder (AMUS-B, MHS)
- MW Imager (SSMI, SSMIS, TMI, AMSR-E)
- MW Sounder (SSMIS)
- GPS Occultation (GRAS, BlackJack)
Ongoing development
- ASCAT winds assimilation in MSM

Observing System Experiment in a regional model
Data assimilated in regional model

- Important subject to use ASCAT in regional data assimilation system
Heavy rainfall prediction in MSM

- Warm and moist outflow from TC caused heavy rainfall.
- Operational MSM did not predict that because TC position was not accurate in the model.
TC bogus over western North Pacific

- Tropical cyclone bogus observation are assimilated to construct a realistic TC structure in the initial fields over western North Pacific.

Parameters to generate the TC bogus data
- First guess
 - Central position of the TC
 - Central sea level pressure
 - 15m/s wind speed radius

RSMC Tokyo (JMA) analysis

An example of TC bogus assimilated in global analysis
Observing System Experiment

- Five experiments
 Experiment period: 8/7 12UTC - 8/9 03UTC

<table>
<thead>
<tr>
<th></th>
<th>ASCAT</th>
<th>QuikSCAT</th>
<th>TC bogus</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/7 12UTC</td>
<td>use</td>
<td>use</td>
<td>Nouse</td>
</tr>
<tr>
<td>8/7 18UTC</td>
<td>use</td>
<td>nouse</td>
<td>Nouse</td>
</tr>
<tr>
<td>8/8 12UTC</td>
<td>nouse</td>
<td>use</td>
<td>Nouse</td>
</tr>
<tr>
<td>8/8 18UTC</td>
<td>nouse</td>
<td>nouse</td>
<td>Nouse</td>
</tr>
<tr>
<td>8/9 03UTC</td>
<td>nouse</td>
<td>use</td>
<td>use</td>
</tr>
</tbody>
</table>

QuikSCAT, ASCAT, AMV(MTSAT-1R) winds assimilated in each analysis.
Rainfall prediction (12hour fcst.)

Radar OBS. w/ ASCAT, QSCAT, w/o TC bogus w/ ASCAT, w/o TC bogus

w/ QSCAT, w/o TC bogus w/o scatt, w/o TC bogus w/ QSCAT, TC bogus