Improve Usage of Satellite Winds in NCEP Data Assimilation System

Xiujuan Su John Derber Dana Carlis Russ Treadon

OUTLINE

1. Background
2. Method
3. Results
4. Summary
5. Future work
Background

- Asymmetric gross check all satellite and thinning on Geostationary winds will be used to improve satellite wind usage.
 - Negative bias was found in NCEP data assimilation system (GSI) for some satellite winds
 - NESDIS GOES satellite winds has highest density leading large correlated errors which are not explicitly accounted for in GSI
Examples: NESDIS MODES IR cloud drift
Examples: MET-7 IR and visible cloud drift
Method

- **Gross Check for winds in GSI**

 \[C = \text{vector difference } (O-B) / \text{observation error} \]

 - If \(C > \text{gross check limit} \), observation rejected

- **Asymmetric gross check for satellite winds**

 - If Speed difference \(O-B < 0 \) and
 - If \(C > f^* \) gross check limit, observation rejected, \(f < 1.0 \)

- **GOES thinning**

 - Observation with higher EE+QI, closer to center box and cycle time combining was chosen

 - 100(km)X100(km)X100(mb) thinning box chosen
Experiment Results

• **Satellite winds used in GSI**
 - JMA IR and visible cloud drift
 - NESDIS IR cloud drift and water vapor (cloud top) (GOES and MODES)
 - EUMETSAT IR and visible cloud drift (not in 20090610-20090727 period)
• **Experiment period and systems**

 – **20090610-20090727**
 • Current operational forecast (T382L64) and data assimilation system (since December 2009)

 – **20091101-20091215**
 • Current operational forecast model (implemented in December)
 • Data assimilation system (GSI) is December 03 version (subversion no. 5932)
Results

- Forecast Impact
 - NH and SH 500mb anomaly correlation score
 - 850 and 200mb wind RMS
Average over experiment period
Time Series

NH 500 mb Geopotential Height at day 5 for 00Z18JUN2009 - 00Z18JUL2009

SH 500 mb Geopotential Height at day 5 for 00Z18JUN2009 - 00Z18JUL2009

NH 500 mb Geopotential Height at day 5 for 00Z10NOV2009 - 00Z14DEC2009

SH 500 mb Geopotential Height at day 5 for 00Z10NOV2009 - 00Z14DEC2009
Impact on background fits

Observation type: uv257_00 (bias)

- (O-A) - con
- (O-B) - con
- (O-B) - gthin_fall
- (O-A) - gthin_fall

uv257_00 2009110900-2009121318

data no. in thousands
Observation type: uv253_00 (bias)

- (o-b) - con
- (o-a) - con
- (o-b) - githin_fall
- (o-a) - githin_fall

uv253_00 2009/11/09 00-2009/12/31 18

Data no. in thousands
Data rejected by asymmetric gross check and thinning

<table>
<thead>
<tr>
<th>Satellite wind type</th>
<th>Thinning and asymmetric gross check</th>
</tr>
</thead>
<tbody>
<tr>
<td>JMA IR and visible low level (243)</td>
<td>389530, 8.1% rejected</td>
</tr>
<tr>
<td>MET-7 IR and visible low level (243_00)</td>
<td>95840, 17.6% rejected</td>
</tr>
<tr>
<td>MET-9 IR and visible low level (243_56)</td>
<td>188790, 19.8% rejected</td>
</tr>
<tr>
<td>GOES IR cloud drift (245)</td>
<td>1115900, 52.5% rejected</td>
</tr>
<tr>
<td>GOES IR Water vapor (246)</td>
<td>584240, 55.1% rejected</td>
</tr>
<tr>
<td>JMA IR and visible high level (252)</td>
<td>312920, 20.7% rejected</td>
</tr>
<tr>
<td>MET-7 IR and visible all level (253_00)</td>
<td>67073, 36.8% rejected</td>
</tr>
<tr>
<td>MET-9 IR and visible all level (253_56)</td>
<td>138470, 36.4% rejected</td>
</tr>
<tr>
<td>MODES IR cloud drift(257)</td>
<td>775160, 13.5% rejected</td>
</tr>
<tr>
<td>MODES IR water vapor(258)</td>
<td>452690, 6.3% rejected</td>
</tr>
</tbody>
</table>
Summary

• An asymmetric gross check and a thinning algorithm is applied in GSI to improve satellite wind usage
• The results show positive forecast impacts on Northern and Southern Hemisphere, neutral in tropical regions over two test periods.
• The rate of data rejection by asymmetric check varies greatly from one type to another, from less than 10% for JMA low level winds and MODES water vapor to up 30% for MET winds
• The negative speed biases (O-B) for all satellite winds are reduced and become positive bias for most levels of most satellite winds
Future Plans

- Investigate height assignment feature in GOES satellite winds
- Continue fine tune asymmetric gross check factor