Improve Usage of Satellite Winds in NCEP Data Assimilation System

Xiujuan Su John Derber Dana Carlis Russ Treadon

OUTLINE

- 1. Background
- 2. Method
- 3. Results
- 4. Summary
- **5. Future work**

Background

- Asymmetric gross check all satellite and thinning on Geostationary winds will be used to improve satellite wind usage.
 - Negative bias was found in NCEP data assimilation system (GSI) for some satellite winds
 - NESDIS GOES satellite winds has highest density leading large correlated errors which are not explicitly accounted for in GSI

Examples: NESDIS MODES IR cloud drift

Examples: MET-7 IR and visible cloud drift

Method

- Gross Check for winds in GSI
 - C=vector difference (O-B)/observation error
- > If C > gross check limit, observation rejected
- Asymmetric gross check for satellite winds
 - If Speed difference O-B <0 and</p>
 - if C > f* gross check limit, observation rejected, f<1.0</p>
- GOES thinning
- Observation with higher EE+QI, closer to center box and cycle time combining was chosen
- > 100(km)X100(km)X100(mb) thinning box chosen

Experiment Results

- Satellite winds used in GSI
 - -JMA IR and visible cloud drift
 - -NESDIS IR cloud drift and water vapor (cloud top) (GOES and MODES)
 - -EUMETSAT IR and visible cloud drift (not in 20090610-20090727 period)

- Experiment period and systems
 - -20090610-20090727
 - Current operational forecast (T382L64) and data assimilation system (since December 2009)
 - -20091101-20091215
 - Current operational forecast model (implemented in December)
 - Data assimilation system (GSI) is December 03 version (subversion no. 5932)

Results

- Forecast Impact
- NH and SH 500mb anomaly correlation score
- 850 and 200mb wind RMS

Average over experiment period

Time Series

YUEJIAN ZHU, GMB/EMC/NCEP/NOAA

TROPICAL 200 mb Vector at day 3 for 00Z10N0V2009 - 00Z14DEC2009

Impact on background fits

Data rejected by asymmetric gross check and thinning

Satellite wind type	Thinning and asymmetric gross check
JMA IR and visible low level(242)	389530, 8.1% rejected
MET-7 IR and visible low level (243_00)	95840, 17.6% rejected
MET-9 IR and visible low level (243_56)	188790, 19.8% rejected
GOES IR cloud drift (245)	1115900, 52.5% rejected
GOES IR Water vapor (246)	584240, 55.1% rejected
JMA IR and visible high level(252)	312920, 20.7% rejected
MET-7 IR and visible all level (253_00)	67073, 36.8% rejected
MET-9 IR and visible all level (253_56)	138470, 36.4% rejected
MODES IR cloud drift(257)	775160, 13.5% rejected
MODES IR water vapor(258)	452690, 6.3% rejected

Summary

- An asymmetric gross check and a thinning algorithm is applied in GSI to improve satellite wind usage
- The results show positive forecast impacts on Northern and Southern Hemisphere, neutral in tropical regions over two test periods.
- The rate of data rejection by asymmetric check varies greatly from one type to another, from less than 10% for JMA low level winds and MODES water vapor to up 30% for MET winds
- The negative speed biases (O-B) for all satellite winds are reduced and become positive bias for most levels of most satellite winds

Future Plans

- Investigate height assignment feature in GOES satellite winds
- Continue fine tune asymmetric gross check factor