

Comparison of MISR and Meteosat-9 Cloud Motion Winds

by Katrin Lonitz and ÁkosHorváth

Acknowledgement: Catherine Moroney, IlianaGenkova, Kevin Mueller, Arthur de Smet, EUMETSAT User Service & J.P.

Muller

Tenth International Winds Workshop, Tokyo 25 February 2010

Motivation

Assimilation of CMWs (mainly from geostationary satellites) in numerical models have positive impact on weather forecasts

→Lack of information about winds especially in polar regions.

*Image taken from a presentation of Peter Bauer, ECMWF Training course, The Global Observing System

Motivation

Past

Comparisons of MISR cloud motion winds (CMWs) withRadiosondes measurements, wind profiler data sets and forecast models.

Detailed evaluation of CMWs from MISR with satellite retrievals.

Need

good agreements, but sparse

Methodology

INPUT-dataofwholeyear2008

MISR Cloud Motion Winds	$\frac{\text{MSG-2 Cloud Motion Winds}}{\text{eVisible&infraredchannels}}$ $\frac{\text{OualityIndicatorwithoutfirstgues}}{\text{s} \ge 80\%}$				
 TC_STEREO product, version F08-0017 Paths150 – 230 Wind quality "good" and "very good" 					
	Pressurelevelsconverted to heightlevelsusing ERA-Interim reanalysisdata				

Number of collocations

whole data	MISR quality	MSG-2 quality	no clear sky winds
841,269	354,814	226,336	225,155

Example 1: NS-wind

Rms NS Wind dependent on Wind Quality

Dependency of RMSD of NS wind on quality indices.

BIG decrease of RMSD of NS wind greater equals MISR quality 2 (uncertain) to 3 (good).

Example 2: EW-wind

MISR "Clear Sky Winds"

- MISR: no target selection
- → retrievals over cloud-free land domains
 - = "clear sky winds"
- If retrievals are accurate:
- → clear sky wind speeds \approx 0
- → clear sky heights close to scene elevation
- Clear sky winds establish minimum error bounds

Part of MISR orbit 43469, Path 176.

red = scene elevation [km]

green = retrieved height [km] (= CTH of MISR)

white = difference between them

Northern winds: + height difference Southern winds: – height difference wind barb = meteorological convention

 $RMSD_{EW-Wind} = 0.69 m/s$ $RMSD_{NS-Wind} = 1.95 m/s$

3/1/2010

• 225,155 collocations water: 200,554 land: 24,501

VARIABLE	REGIME	STATISTICS			
		Bias	RMSD	Corr	
	Water & Land	-0.42 m/s	2.52 m/s	0.97	
EW Wind	Water	-0.39 m/s	2.42 m/s	0.97	
	Land	-0.72 m/s	3.13 m/s	0.95	
NS Wind	Water & Land	-1.13 m/s	4.13 m/s	0.84	
	Water	-1.06 m/s	3.96 m/s	0.85	
	Land	-1.72 m/s	5.25 m/s	0.73	
	Water & Land	450 m	1078 m	0.89	
СТН	Water	462 m	937 m	98.0	
	Land	355 m	1637 m	0.87	

- All statistical parametersover water are smaller than over land, except the bias of the CTH.
- Meandifference (=Bias), RMSD and correlation of EW wind arebetterthan of NS wind.

0.01 2.0 EW/NS 8.0 wind alias aind angid [m/a] E&/MS WIND BAS [m//s] 5.0 meandiffe 1.0 rence 3.0 [m/s] 1.52.0 1.0 L -3.0 L 1 1.1 . 1 1 1 40 -600-4020 40 -60 (\cdot) -40-70 (\cdot) 20 -20Begin of priture intervol with night size of theorees Begin of latitude intervol with a bir size of 2 begrees 1.21 0.9 EW/NS AN REPORT OF A DAY 0.8wind correlation 0.70.5 wind wind 3/1/2010 o.s L τ. 1 1 1 . -60-400 -20 20 $\langle A_{ij} \rangle$

Begin of latitude interval eith orbin size of C segrees

EW/NS wind RMSD [m/s]

3/1/2010

3/1/2010

e) Dependence of MISR – Meteosat-9 CMW and CTH meandiff. on MISR domain

e) Dependence of MISR – Meteosat-9 CMW and CTH bias on MISR domain

20

MISR and Meteosat-9 CTHs, and ERA-Interim BLHs at 10:13 - 10:41 UTC, 13 August 2008.

CALIPSO CBHs and CTHs, Meteosat-9 CTHs, and ERA-Interim BLHs at 14:57 – 15:01 UTC, 13 August 2008.

Summary

• MISR clear sky winds prove accurate camera co-registration and puts lower limits on MISR CMWs and CTHs.

• Differences in EW wind are small (-0.42 \pm 2.52 m/s) and in NS wind bigger (- 1.13 \pm 4.13 m/s), biggest differences in CTHs (450 \pm 1078 m).

•Statistical Results over water are better than over land.

Big dataset with 225,155 collocations delivers robust statistics.
 → Display of spatial distribution of statistical parameters possible.
 → Further studies for detailed explanation necessary.

• Future: MISR-like retrievals with wider swath

 \rightarrow Using CMWs and CTHs in numerical models for weather forecast

Backup Slides

NS wind stronger than EW wind

a) Retrieved MISR "Height" vs. Scene Elevation.

VARIABLE	REGION	8	STATISTICS	MEAN		
		Bias	RMSD	Corr	MISR	MSG-2
	SH	-0.54 m/s	2.52 m/s	0.97	7.68 m/s	8.22 m/s
EW Wind	Tropics	-0.29 m/s	2.49 m/s	0.94	-2.98 m/s	-2.69 m/s
	NH	-0.70 m/s	2.63 m/s	0.96	3.79 m/s	4.49 m/s
	SH	-1.22 m/s	3.77 m/s	0.91	0.88 m/s	2.11 m/s
NS Wind	Tropics	-1.08 m/s	4.20 m/s	0.75	0.38 m/s	1.45 m/s
	NH	-1.17 m/s	4.45 m/s	0.85	-2.81 m/s	-1.64 m/s
	SH	0.20 m/s	3.21 m/s	0.92	12.90 m/s	13.00 m/s
Wind Speed	Tropics	0.41 m's	3.22 m/s	0.79	8.83 m/s	8.42 m/s
	NH	0.17 m's	3.72 m/s	<u> 88.0</u>	10.96 m/s	10.70 m/s
	SH	411 m	949 m	0.89	1994 m	1584 m
стн	Tropics	450 m	1132 m	0.89	2130 m	1680 m
	NH	525 m	1093 m	0.89	2381 m	1856 m

Spatialvariation of MISR Meteosat-9 CMW and CTH RMSD

RMSD

NS wind

[m/s]

RMSD EW wind [m/s]

Spatialvariation of MISR Meteosat-9 CMW and CTH correlation

Corr. EW wind

Corr. NS wind

Seasonal Variation

Investigation of large variation in NS wind bias over land

•shape of the line is mostly dominated by CMWs north of 30 S

•Monthly mean NS winds of MISR and of Meteosat-9 over land show similar variations in time

→But mean NS winds of MISR are mostly negative (northerly) and MSG-2 NS winds are always positive (southerly)

•Lower absolute biases during winter times in NH and SH

NS wind meandiff. over land [m/s]

Seasonal Variation

Relative Bias (normalized by MISR

asterisks: annual mean differences graylines:intervalfrom25th to 75th percentile grayshadow:range ofmonthlymeandifferences

Dependence of MISR – Meteosat-9 CMW and CTH bias on MISR domain

Dependence of MISR – Meteosat-9 CMW and CTH bias on MISR domain

Dependence of MISR – Meteosat-9 CMW and CTH bias on MISR domain

M2/M3 CTHs ≤ 1.5 km over land NM CTHs> 0.2 km over land

VARIABLE	REGIME	STATISTICS			
		Bias	RMSD	Corr	
	Water & Land	-0.10 m/s	1.58 m/s	0.98	
EW Wind	Water	-0.14 m/s	1.65 m/s	0.98	
	Land	0.03 m's	1.59 m/s	0.95	
	Wate [,] & Land	0.07 m/s	3.10 m/s	0.89	
NS Wind	Water	0.05 m/s	3.11 m/s	0.90	
	Land	0.15 m/s	3.07 m/s	0.80	
	Water & Land	0.11 m's	2.65 m/s	0.90	
Wind Speed	Water	0.04 m's	2.54 m/s	0.95	
	Land	0.31 m's	2.93 m/s	0.30	
	Water & Land	93 m	493 m	0.93	
CTH	Water	77 m	375 m	0.95	
	Land	142 m	733 m	0.90	

VARIABLE	REGIME	STATISTICS					
		Bias		RMSD		Correlation	
		NM	M2/M3	NM	M2/M3	NM	M2/M3
	Water & Land	-0.28 m/s	-0.15 m/s	2.04 m/s	1.38 m/s	0.97	0.98
EW Wind	Water	-0.25 m/s	-0.13 m/s	1.90 m/s	1.38 m/s	0.98	0.98
	Land	-0.45 m/s	-0.52 m/s	2.77 m/s	2.49 m/s	0.93	0.94
	Water & Land	-0.39 m/s	-0.48 m/s	3.92 m/c	4.21 m/s	0.84	0.83
NS Wind	Water	-0.39 m/s	-0.45 m/s	3.80 m/s	4.10 m/s	0.85	0.84
	Land	-0.39 m/s	-0.70 m/s	4.56 m/s	4.38 m/s	0.73	0.69
	Water & Land	-0.01 m/s	0.06 m/s	3.14 m/s	3.22 m/s	0.84	0.86
Wind Speed	Water	0.02 m/s	0.08 m/s	2.96 m/s	2.37 m/s	0.85	0.88
	Land	-0.24 m/s	-0.00 m/s	4.08 m/s	4.52 m/s	0.70	0.66
СТН	Water & Land	469 m	365 m	900 m	790 m	0.84	0.85
	Water	476 m	380 m	850 m	785 m	0.80	0.83
	Land	431 m	263 m	1161 m	809 m	0.88	0.90