Diagnosing the impact of Atmospheric Motion Vectors in the ECMWF 4D-Var Assimilation System

Lars Isaksen, Carla Cardinali and Dingmin Li
ECMWF, Reading, UK
Diagnosing the impact of Atmospheric Motion Vectors in the ECMWF 4D-Var Assimilation System

- Introducing of a new adjoint-based diagnostic tool: Forecast Sensitivity to Observations (FSO)
- FSO versus Observing System Experiments
- FSO evaluation of AMV impact in the 4D-Var at ECMWF
- Conclusions
FSO - Forecast sensitivity to observation: Equations

\[
\frac{\partial J}{\partial y} = \frac{\partial x_a}{\partial y} \frac{\partial J}{\partial x_a} \quad x_a \text{ is the analysis, } y \text{ observations}
\]

\[
J \text{ is a “dry energy norm” measure of the forecast error.}
\]

Analysis solution:

\[
x_a = x_b + K(y - Hx_b)
\]

Analysis sensitivity to observation:

\[
\frac{\partial x_a}{\partial y} = K^T = R^{-1}HA
\]

K is Kalman Gain matrix; H is obs.operator
R and A are obs./analysis covar. error matrices

Forecast error sensitivity to the analysis can be calculated using adjoint method:

\[
\frac{\partial J}{\partial x_a} = \frac{\partial J}{\partial y} R^{-1}HA \frac{\partial J}{\partial x_a}
\]

F. Rabier et al. 1996.

The tool provides the Forecast Error Contribution (FEC) for each assimilated observation, it can be accumulated by observation type, subtype, variable or level

\[
FEC = \delta J = \left< \frac{\partial J}{\partial y}, \delta y \right> = \frac{\partial J}{\partial y} (y - Hx_b)
\]
FSO: 24h Forecast Error Contribution of 2009 Global Observing System in ECMWF’s 4D-Var
Forecast error contribution of the observed wind grouped by satellite types—positive corresponds to an increase of Forecast Error

Forecast error contribution of the wind on pressures levels & grouped by satellite types—largest degradation comes from the lower troposphere
FSO versus OSEs (Observing System Experiments)

<table>
<thead>
<tr>
<th>FSO</th>
<th>OSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measures the impact of an observation when entire observing system is used</td>
<td>Observation impact is evaluated by blacklisting observing system</td>
</tr>
<tr>
<td>Measures the response of a single forecast metric to all perturbations of observing system</td>
<td>Effects of a single perturbation on all forecast metrics</td>
</tr>
<tr>
<td>Tangent linear restrictions only allow short-range forecast 24-48h evaluation</td>
<td>Can measure data impact on long-range forecast</td>
</tr>
<tr>
<td>Measures impact of all observations assimilated in a single analysis</td>
<td>Accounts for combined effect of observations assimilated in all previous analyses</td>
</tr>
</tbody>
</table>
Impacts from OSEs: Fc RMS error T24h and T+72h Sept. 2008

U-comp Fc T+24h error: AMV minus Baseline

V-comp Fc T+24h error: AMV minus Baseline

U-comp Fc T+72h error: AMV minus Baseline

V-Comp Fc T+72h error: AMV minus Baseline
FSO AMV 700-1000 hPa U-Wind: Summer 2006

FSO

OSE

RMSE
AMV - Baseline
850 hPa U
Atlantic Ocean: transition between sub-tropical and extra-tropical from weak to strong zonal flow

Indian Ocean: Large errors associated with well established Monsoon circulation

courtesy by Fernando Prates, ECMWF
The strong sinking motion in SH near 30S represents the southern limit of the Hadley circulation where the subtropical high cell is located. Cloud suppression or low clouds.

AMV quality affected: it is difficult to assign the cloud top height

courtesy by Fernando Prates
A too strong low level flow of Indian Summer Monsoon is a well known problem in the ECMWF model as is indicated by the June-July-August mean analysis increments.
Winter 2007 central/eastern Pacific Cross Section

- The largest negative impact of AMVs to the forecast error is found between 5N - 15N coinciding to a broad downward mean motion of the Hadley circulation. Large departures were also found below 700hPa in the same region.

- A second cluster of negative impact near 25N/140W is localized on top of a region of weak winds (strong sinking motion/ high pressure system)
Reassigning low-level AMVs in inversion regions

- For low-level AMVs, EUMETSAT has shown benefits from assigning AMVs to the inversion base, if an inversion is detected in a forecast profile.
- Vertical resolution of ECMWF forecast data used at EUMETSAT is 50 hPa, so the inversion height assignment may be better done within the IFS.
- For GOES, no inversion height assignment is used, and forecast data is coarser.
Conclusions

• FSO method provide us with a useful and economic diagnostic tool. It can make design of OSEs more efficient.

• FSO and OSE give qualitatively similar results

• FSO show that AMVs cause increased forecast error in some regions

• The location of the largest negative impact of the AMVs in Atlantic (Summer 2006) and in pacific (Winter 2007, El Nino) is found close to the region of strong sinking mean motion embedded in the Hadley circulation

 • Observation quality problem due to the height assignment

• Detrimental effect is also observed in the Indian ocean associated with a too strong Indian monsoon circulation developed by the model

 • Model bias likely cause