

Improving AMV impact in NWP

Mary Forsythe, James Cotton and Roger Saunders

10th International Winds Workshop, 22-26 February 2010

© Crown copyright Met Office

Met Office AMV usage

Changes since the 9th International Winds Workshop

Assimilation Changes

- Jul 08: New observation error scheme
- Nov 09: Stricter, symmetric background check

Met Office surface wind usage

Data Coverage: Scatwind (7/11/2009, 18 UTC, qu18) Total number of observations assimilated: 16175

Seawinds (6866)ERS (267)ASCAT (8421)WindSat (621)

Data Coverage: Scatwind (7/12/2009, 18 UTC, qu18) Total number of observations assimilated: 11183

Seawinds (0) ERS (338) ASCAT (8747) WindSat (2098)

Nov 2008: Started assimilating WindSat winds

Nov 2009:

Demise of Seawinds

WindSat helps to fill holes in scatterometer coverage

James Cotton looks after this work at Met Office

AMV data denial trials

Verification versus observations

12/12/07 - 12/01/08

This presentation covers the following areas

- New AMV datasets improving the coverage
- New AMV datasets for high resolution NWP
- Options for improving the AMV assimilation
- Summary

New AMV datasets

Improving coverage

© Crown copyright Met Office

Incentive: not much other wind data in AMV data voids.

Useful for constraining polar front jets.

Possibilities:

 Increased geostationary coverage GOES in SH

Closing the gap...

Possibilities:

- Increased geostationary coverage GOES in SH
- Polar winds using only 2 images
 Metop AVHRR

Possibilities:

- Increased geostationary coverage GOES in SH
- Polar winds using only 2 images
 Metop AVHRR
- Multi-satellite polar winds e.g. Metop-A and Metop-B

?2012 -> for Metop-A/B, possibly earlier for other less optimal configurations

Could completely close gap. Also benefit from shorter image interval of 50 min rather than 100 min.

Possibilities:

- Increased geostationary coverage GOES in SH
- Polar winds using only 2 images
 Metop AVHRR
- Multi-satellite polar winds e.g. Metop-A and Metop-B
- Highly elliptical orbit
- Other winds datasets
 - ADM-Aeolus DWL
 - MISR follow-on

From Riishojgaard, IWW8 talk

?2016

Possible POLARSAT Canadian mission for 2 satellites.

See Louis Garand's talk

New AMV datasets

For high resolution NWP

© Crown copyright Met Office

Why are we interested?

- Current AMV products capture broad-scale flow.
- NWP moving to higher spatial resolution

 e.g. Met Office
 global
 25 km
 regional
 12 km
 UK
 1.5 km
- Can we derive more useful AMV information for nowcasting or assimilation in high resolution models? Particularly to help with forecasting high impact weather events.
- Information available on smaller scales in the imagery (e.g. Purdom IWW8)
- Higher temporal resolution

e.g. Meteosat-8 5 min interval imagery over Europe, GOES rapid scanning for severe weather

UK 4km

Examples of wind field resolution from Met Office operational models

- Poorer low speed winds (limited by pixel resolution and image interval e.g. 4 km, 5 min - > 13.3 m/s to move one pixel).
- 2. May want to reduce dependence on existing quality control measures (spatial/temporal consistency, NWP forecast comparisons) but risk of increased amount of poor quality data.
- 3. Spatial and temporal error correlations currently handled by thinning, but would lose a lot of local flow information how best to handle in NWP?

Case study - 13 November 2009

Figure 1: Met Office analysis chart for 1200 UTC 13 November 2009. A rapidly deepening low pressure system is moving north eastwards towards the UK.

Case study - 13 November 2009

Meteosat-8 HRVIS

AMV assimilation

Current status and future options

© Crown copyright Met Office

180W 150W 120W 90W 60W

GOES-12

1604

• Terra 686

GOES-11

1615

Key areas of AMV assimilation

Met Office, 13th Jul 07 QU12 80N Received 60N 40N 20N EQ 20S 40S 60S 80S 180W 150W 120W 90W 60W 30W 60E 90E 120E 150E 180E 0 30E GOES-11 53112 GOES-12 65481 Meteosat–9 172412 Meteosat-7 27672 MTSAT-1R 6125 Terra Aqua 12481 blacklisting, 6843 thinning and background check 80N Post QC 60N 40N 20N EQ 20S 40S 60S 80S 123

30W

30E

0

Meteosat-9

2803

60E

1311

Aqua

Meteosat-7

1049

- Blacklisting
- Thinning
- Background check
- **Observation errors**
- Observation operator

Balance between removing and down-weighting. Remove where consistently of poorer quality.

Spatial

e.g. all winds above 100 hPa, all VIS winds above 700 hPa etc.

• How to set? based on limitations of derivation and O-B stats

QI thresholds

Which QI or combination of QIs? preference model-independent QI

• How to select appropriate thresholds? QI versus stats plots, but ensure maintain reasonable coverage

Temporal thresholds

• Should we apply? remove timeslots affected by solar stray light

Speed thresholds

Should we apply? remove slow winds (not well resolved)

Main approach to alleviate problems with spatially and temporally correlated error. Another option is superobbing.

• Choice of horizontal, vertical and temporal box dimensions - 200 km about right? Less experience setting optimal temporal dimension for use in 4D-Var.

• How to select observation to use? closest to centre of box, highest QI, lowest observation error

Safeguard to avoid assimilating data that is very different to the background.

- How to design test?
- Should it be symmetric / asymmetric?
- How strict should it be?
- Should we incorporate the check as part of initial QC or as part of VAR or both?

A good specification of the observation error is essential to assimilate in a near-optimal way

m/c

Observation errors

New approach – operational since July 2008

Total u/v error = $\sqrt{(u/v Error^2 + Error in u/v due to error in height^2)}$

For this we need an estimate of:

- 1. u and v error (Eu and Ev)
- 2. height error (Ep)

Ideally from data producers

Until then estimate Ep using best-fit pressure stats as a guide. Eu/v based on QI.

Plan to retrial with revised Ep look-up table

Observation operator

Currently treat as point winds in space and time – may want to treat as a layer....

- Layer shape Gaussian preferred
- Layer location relative to assigned height – centred / offset
- Layer width how to set?

Biggest improvement seen for layer widths of 20-60 hPa

It is unlikely that the same layer width will be suitable for all Meteosat-9 IR 10.8 winds.

To get an upper limit of what might be possible, we also calculated O-B statistics where we allowed each observation to have its own best-fit layer width (defined as the layer in range 10-200 hPa giving minimum O-B vector difference).

	Mean Vector Difference m/s
Single level	5.78
Minimum fixed layer - centred	5.47 (5%)
Minimum fixed layer - offset	5.53 (4%)
Best-fit layer - centred	4.07 (30%)
Best-fit layer - offset	3.62 (37%)
Best-fit single level	1.75 (70%)

Observation operator

- 1. Improving AMV coverage
 - Reducing the gap between geo and polar
 - Improving timeliness of polar data
- 2. Increasing interest in high resolution AMV products as model resolution improves.
 - Not straight-forward
 - Need to review and optimise derivation and assimilation approach
- 3. Improving the AMV assimilation
 - Areas to consider include:
 - Blacklisting (space, time, QI, speed)
 - Thinning / Superobbing
 - Background check
 - Observation errors
 - Observation operator
- 4. Many of these tasks will benefit from producers and users working together.

Questions and answers

© Crown copyright Met Office