AVHRR Polar Winds Derivation at EUMETSAT: Current Status and Future Developments

Gregory Dew EUMETSAT

with contributions from Jörg Ackermann (EUMETSAT) and Iliana Genkova (ECMWF)

CONTENTS

- BACKGROUND
- OVERVIEW OF EUMETSAT IMPLEMENTATION
- PROTOTYPE
 - ECMWF Analysis Experiments
 - Use of IASI cloud top information
- EUMETSAT OPERATIONAL IMPLEMENTATION
 - Differences to Prototype
 - Tracking and QI Issues
 - Preliminary Validation Results
- ERROR SOURCES
 - Tracking degradation with increased image time interval
- FUTURE PLANS

Background

- METOP-A polar orbiting satellite launched October 2006
- Operated by EUMETSAT
- Joint European-US satellite system agreement foresees that both NOAA and EUMETSAT derive and provide polar wind data to users
- NOAA generate polar winds data from METOP AVHRR IR channel

Overview of EUMETSAT Implementation

- Prototype Development based on CIMSS Polar Winds Code
- Operational Development
- Validation of operational version using prototype, ECMWF reanalysis, radiosonde data
- Pre-operational availability of products
- Assimilation experiments at ECMWF
- Routine Operations

Prototype

- Off-line post-processing tool adapted CIMSS Polar Winds Code
- Mapping onto a polar stereographic grid
 winds output twice per orbit (North, South Pole regions)
- Generates winds using triplets, ie sequences of 3 overlapping orbits
- Uses forecast data to provide a first guess of tracked target position
- IR window height assignment and RFF to adjust heights

Prototype Example

AVHRR polar cap wind fields

Arctic

Antarctic

EUMETSAT -

Prototype Production Data Sets

- January 2009 AVHRR winds data set
- Co-locations with METOP-A IASI instrument derived cloud top information (CO2 slicing method potentially better for thin clouds)
- Data sets
 - winds co-located with IASI heights (prototype heights)
 - winds co-located with IASI heights (IASI heights)

Prototype Data Sets ECMWF Observation Departures

Prototype Data Sets ECMWF Observation Departures

EUMETSAT -----

Prototype Data Sets Height Coverage

IASI version > 27 January 2009 – heights adjusted downwardsIASI Height Assignment Implementation further upgrades in pipeline

Z norm diff of the RMS of FC Error as a function of forecast range – NH positive diff -> positive impact

IWW-10, Tokyo, Japan, February 22nd - 26th 2010

Z norm diff of the RMS of FC Error as a function of forecast range – SH positive diff -> positive impact

Z norm diff of the RMS of FC Error as a function of forecast range –TR positive diff -> positive impact

Prototype Data Sets ECMWF Impact Conclusions

- EUM Prototype (CIMSS height assignment) Polar Winds data set for January 2009 has a neutral impact on forecast
- Local 'positive' and 'negative' forecast impact regions are alternating and they don't show any trends
- IASI height assignment produces worse departure statistics
 improvements expected
- ECMWF ideally require longer than one month worth of data

EUMETSAT Operational Version Winds Derivation

- All Level 2 wind products processed in NRT using 3 minute (PDU) image data at a time, nominal processing time 3 minutes
- Only use 2 orbits to produce the winds for each PDU
- For each target PDU map the 3 search PDUs in the previous orbit which overlap onto the target PDU co-ordinate system
- Tracking between pairs of images (current and previous orbit)
- Disseminated between 90 and 110 minutes after sensing time

Tracking Issues

- Use/non-use of forecast first guess information
- Tracking methods
 - cross-correlation, euclidean distance, centre of mass
- Pixel size normal, super 3x3, super 9x9
- Target size 28 x 28, 152 x 152
- Pyramid approach: large target and search area -> 1st estimate
 small target and search area centred on 1st estimate

Tracking Methodology – no forecast, large search area

Target Size 28x28

Target Size 152 x 152

Option without first guess – need large target size

Tracking Methodology – forecast first guess, small search area

Target Size 28x28

Target Size 152 x 152

Option with first guess – can use small target size

QI Issues

• Spatial and Forecast Consistency

Tracking Consistency

- track target from current to previous orbit
- track target from previous orbit back again to current orbit
- use vector, speed, direction differences as an indication of tracking consistency

Temporal Height Consistency

- separate height assignments for target in both orbits
- use height differences as an indication of consistency

Preliminary Validation Overview

- Prototype
- Pre-Operational forecast guided (small target size 28 x 28)
- Pre-Operational no forecast guide (large target size 152 x 152)
- Validation against ECMWF re-analysis

QI filtering

- prototype QI > 60
- pre-operational (forecast) QI > 50
- pre-operational (non-forecast guided) QI > 50
- removes about 50 % of winds

AVHRR Winds vs Re-Analysis Sample One Day

Arctic (Red)

Antarctic (Blue)

PROTOTYPE	FORECAST FIRST	NO FORECAST		PROTOTYPE	FORECAST FIRST	NO FORECAST
	GUESS (GS2)	(GS3)			GUESS (GS2)	(GS3)
-1.21	0.87	-1.45	Speed Bias (m/s)	-0.10	1.72	-0.02
2.67	4.50	8.21	Speed RMS (m/s)	2.01	3.97	5.30
1.00	0.45	5.05	Direction Bias (deg)	0.54	2.25	11.39
8.60	15.65	59.40	Direction RMS (deg)	13.33	38.45	66.91
19.47	21.52	16.90	Mean Speed AMV	14.69	12.83	7.65
20.69	20.65	18.35	Mean Speed Analysis	14.79	11.11	7.66
3988	970	1035	Sample size	1503	393	947
	PROTOTYPE -1.21 2.67 1.00 8.60 19.47 20.69 3988	PROTOTYPE FORECAST FIRST GUESS (GS2) -1.21 0.87 2.67 4.50 1.00 0.45 8.60 15.65 19.47 21.52 20.69 20.65 3988 970	PROTOTYPE FORECAST FIRST NO FORECAST GUESS (GS2) (GS3) -1.21 0.87 -1.45 2.67 4.50 8.21 1.00 0.45 5.05 8.60 15.65 59.40 19.47 21.52 16.90 20.69 20.65 18.35 3988 970 1035	PROTOTYPE FORECAST FIRST NO FORECAST GUESS (GS2) (GS3) -1.21 0.87 -1.45 2.67 4.50 8.21 1.00 0.45 5.05 8.60 15.65 59.40 19.47 21.52 16.90 20.69 20.65 18.35 3988 970 1035	PROTOTYPE FORECAST FIRST NO FORECAST PROTOTYPE GUESS (GS2) (GS3) -1.21 0.87 -1.45 Speed Bias (m/s) -0.10 2.67 4.50 8.21 Speed RMS (m/s) 2.01 1.00 0.45 5.05 Direction Bias (deg) 0.54 8.60 15.65 59.40 Direction RMS (deg) 13.33 19.47 21.52 16.90 Mean Speed AMV 14.69 3988 970 1035 Sample size 1503	PROTOTYPEFORECAST FIRST GUESS (GS2)NO FORECAST (GS3)PROTOTYPEFORECAST FIRST GUESS (GS2)-1.210.87-1.45\$peed Bias (m/s)-0.101.722.674.508.21\$peed RMS (m/s)2.013.971.000.455.05Direction Bias (deg)0.542.258.6015.6559.40Direction RMS (deg)13.3338.4519.4721.5216.90Mean Speed AMV14.6912.8339889701035Sample size1503393

% AMV low level	24	16	11	% AMV low level	25	32	20
% AMV mid level	71	80	84	% AMV mid level	73	64	78
% AMV high level	5	4	5	% AMV high level	2	4	2

- Prototype departure statistics better
- Forecast guided winds better departure statistics
- Height distribution predominantly medium level (400 700 hPa)

Metop-A Prototype Winds vs. ANALYSIS (19.1.10)

IWW-10, Tokyo, Japan, February 22nd - 26th 2010

Page 22

Metop-A GS-2 Winds vs. ANALYSIS (19.1.10) [OVERALL_QUALITY > 50 %]

IWW-10, Tokyo, Japan, February 22nd - 26th 2010

Page 23

Metop-A GS-3 Winds vs. ANALYSIS (19.1.10) [OVERALL_QUALITY > 50 %]

Validation Activities Leading Up To Operations

- More statistics over longer time periods, inc. radiosonde
- Isolate and filter out areas in which quality is lower
- Fine tuning of processing parameters eg QI weights
- Comparison of forecast and non-forecast guided winds
- Pre-operational availability (test products available for ECMWF test dissemination) est > May 2010

Error Sources

- Tracking
 - feature changes significantly in 100 minutes
 - feature tracked representative of flow ?
 - parallax (more at extreme viewing geometry)
 - correlation surface peak analysis
 - if using forecast as first guess, impacted by errors in height assign
- Height Assignment
 - IR Window for thin clouds
 - IASI height assignment
 - temperature inversions

Degradation in Tracking Quality

- Illustration of deterioration in tracking quality as time interval between successive images increases and the feature correspondingly changes
- Examples using Meteosat Second Generation Images
 tracking intervals 15, 30, 45, 60, 75, 90, 105 minutes
 - search area increasingly expanded with time about target centre to contain the feature movement
 - IR channel 24x24 target sizes
 - HRVIS 32x32, 48x48, 96x96 target sizes

MSG IR – 24x24 pixel target 15 minute tracking interval

MSG IR – 24x24 pixel target 30 minute tracking interval

MSG IR – 24x24 pixel target 45 minute tracking interval

MSG IR – 24x24 pixel target 60 minute tracking interval

MSG IR – 24x24 pixel target 75 minute tracking interval

MSG IR – 24x24 pixel target 90 minute tracking interval

MSG IR – 24x24 pixel target 105 minute tracking interval

MSG HRVIS – 32x32 pixel target 15 minute tracking interval: QI > 80

MSG HRVIS – 32x32 pixel target 30 minute tracking interval: QI > 80

MSG HRVIS – 32x32 pixel target 45 minute tracking interval: QI > 80

MSG HRVIS – 32x32 pixel target 60 minute tracking interval: QI > 80 OFV - PQM - VALA AMVIntmProductChan 09.336.13.00 PQM Graphics Display **EUMETSAT**

MSG HRVIS – 32x32 pixel target 75 minute tracking interval: QI > 80

MSG HRVIS – 32x32 pixel target 90 minute tracking interval: QI > 80

MSG HRVIS– 32x32 pixel target 105 minute tracking interval: QI > 80

60 MINUTE INTERVAL : QI > 80

IMPACT OF TARGET SIZE

32 x 32 (Top Left)

48 x 48 (Top Right)

96 x 96 (Bottom)

Page 42

Degradation in Tracking Quality Conclusions

- Tracking severely degraded for time intervals above 60 minutes
 even if the feature is contained in the expanded search area
 - even if forecast estimate good
- Degradation can be reduced by increasing the target size
- METOP-B to be launched April 2012
- Recommendation to investigate combining METOP-A and METOP-B images (separation of 50 minutes)

Future Plans

- Monitor differences between forecast/non-forecast guided winds
- Incorporation of IASI height assignment information
- Height assignment improvements eg low-level clouds
- Use of 2 satellites expected to significantly improve tracking quality
 Metop B scheduled for launch Apr 2012
- Parallax consideration
- Consideration of triplets
 - feature tracked for 200 minutes
 - delay winds availability by 100 mins : availability 190 to 210 mins
- Additional receiver station in Antarctic improve timeliness
- Improvements to quality filtering

