

MISR CMVs

Roger Davies and Aaron Herber Physics Department

Acknowledgements: MISR Science and Data Processing Team (especially Catherine Moroney and Mike Garay) From the AGU Fall Meeting 2009

MISR and the multi-angle remote sensing of clouds: before the launch of Terra, over 10-years ago...

- albedos from multi-angle measurements would be nice ...
 - but these measurements must be co-registered to the same dynamic reference height
- dynamic cloud-top heights would be nice ...
 - but it takes 7 minutes to measure all angles, and clouds move
- cloud-tracked winds would be nice ...

At the 9th IWW

- showed improvements due to sub-pixel matching
 - Davies et al, *Remote Sensing of the Environment,* 2007
- preliminary comparisons between MISR and NCEP
 - also with ECMF (Claire Delsol, Niels Bormann, and Lueder von Bremen)

overview

- comparison of the MISR standard product with 10-years of NCEP reanalysis
 - more to follow on this from Dong Wu
- known problems with/improvements to the MISR standard product
 - more to follow on this from KatrinLonitz
- 10-years of global CMV wind fluctuations

MISRCMVsfrom Stereo Processing

- conventional stereo techniques ⇒ far too slow
 - new techniques of pattern matching had to be developed
 - initially quite noisy (averaged over 70.4 km domain), but unbiased
- 0°, 45°, and 70° triplet of views needed for along-track wind
 - works because the Earth is not flat
- many improvements since then
 - image navigation (< 275 m)
 - sub-pixel enhancement
 - fore and aft redundancy provides quality control
- faster computers have helped
 - less noisy techniques
 - complete reprocessing of stereo data record is practical

MISR-NCEP Comparison

- Analyzed entire data set of MISR winds at version 17
- Compared against NCEP/NCAR reanalysis
 - matched in time, space (area weighted) and height
 - over 22 x 10⁶ matches in10 years

MISR average winds below 3 km

Average reanalysis–MISR scalar wind difference, z<3 km

Reanalysis—MISR scalar bias: land

Reanalysis—MISR scalar bias: ocean

rms scalar wind difference: ocean

Summary of standard product-reanalysis				
Height Range(m)	Over Land	Over Ocean		
Mean Vector Difference (ms^{-1})				
1000-3000	5.8	6.1		
3000-7000	8.0	10.9		
7000-20000	15.8	15.6		
Standard Deviation (ms^{-1})				
1000-3000	3.3	3.3		
3000-7000	6.0	9.0		
7000-20000	15.8	16.2		
RMSE (ms^{-1})				
1000-3000	6.7	6.9		
3000-7000	10.0	14.1		
7000-20000	25.2	22.5		
Table 6.4	I: MISR NCEP Compari	son		

directional bias by latitude

Figure 6.6: Directional bias by latitude - Plot of angular bias over land and ocean against latitude for winds sub 3km

Latitude Range	1 - 3km	3 - 7km	7km +
Over Land			
$25^\circ N - 60^\circ N$	-11.16°	-5.86°	-0.26°
$25^\circ S - 25^\circ N$	6.99°	5.96°	9.18°
$60^\circ S - 25^\circ S$	-10.10°	-23.60°	-15.09°
Over Ocean			
$30^\circ N - 60^\circ N$	-5.35°	-0.46°	-2.02°
$30^\circ S - 30^\circ N$	9.50°	9.86°	2.70°
$60^\circ S - 30^\circ S$	-4.06°	-18.92°	-24.26°

Table 6.3: Directional Bias measured as reanalysis-MISR

Improvements

- more exhaustive matcher
 - greater coverage ≈70% more winds than original method
 - increased coverage at high latitudes
 - double the number of high altitude winds
 - eliminates drop-outs at East-West cardinal points
 - Improves ascending-descending differences

new versus old coverage

Standard Product

New version, with land mask 100 orbits, global

Polar surface wind speeds: standard product

Polar surface wind speeds: new product

since have found a systematic bias in the alongtrack wind, ranging from 0 at centre of swath to 3 m/s at swath edge (see Lonitz and Horváth)

Terra/MISR: 10-year Climate Data Records

- cloud-top heights (from March/2000)
 - cloud fraction by height
 - at 1.1 km
- height-resolved cloud motion vectors (from March/2000)
 - at 70.4 km
- top-of-atmosphere albedos (from May/2000)
 - spectral, equivalent broadband, local, restrictive or expansive too
 - at 35 km
- summarized into 140x300 km blocks, ≈140blocks/orbit, ≈420 orbits/month

New Zealand Average Winds Over Ten Years

Summary

- MISR and reanalysis winds differ
 - physical reasons
 - land effects (-3 m/s MISR below 3 km)
 - tropical wind divergence, thunderstorms (-5 m/s reanalysis)
 - resolution (-1.4 m/s reanalysis)
 - model/algorithm deficiencies
 - MISR still has a weak meridional bias depending on swath position (0-3 m/s), turns wind to the South by 5-10° in descending branch of orbit
 - the reanalysis winds appear 2-3 m/s too fast in the Southern Ocean
- Low level (<3 km) winds agree well
 - overall scalar wind speed bias <0.4 m/s
 - vector rms ≈6 m/s

Summary

- MISR algorithms will likely be changed and reprocessed to correct the swath bias
 - then perhaps repeat this study using high resolution ECMWF reanalysis
- the global fluctuation analysis seems to be useful as is, and of interest to climate change studies
 - a lower background wind speed (-1 m/s/decade) is a reasonable consequence of polar warming
 - with less surface wind over ocean, expect higher Bowen ratios
 - the decrease is greater (up to -4 m/s/decade in North Pacific)
 - an increase 2-3 m/s/decade in Southern Oceans
 - MISR and reanalysis generally agree on this, with MISR showing more regional detail