AMSU-A is a cross-track, step-scan instrument. In every 8 second period, it executes a cross-track scan with 30 Earth Field-of-Vews (FOVs) within ±48 degree from the nadir location, and post-launch coefficients estimation. Emphasis will be put on the derivation of the Lunar contamination results between those based on the pre-launch coefficients and the post-launch coefficients. Corresponding validation and comparison of the Lunar Contamination Correction results demonstrate the big improvements from the pre-launch calibration work.

The Lunar Contamination in AMSU-A

AMSU-A is a cross-track, step-scan instrument. In every 8 second period, it executes a cross-track scan with 30 Earth Field-of-Vews (FOVs) within ±48 degree from the nadir location, and post-launch coefficients estimation. Emphasis will be put on the derivation of the Lunar contamination results between those based on the pre-launch coefficients and the post-launch coefficients. Corresponding validation and comparison of the Lunar Contamination Correction results demonstrate the big improvements from the pre-launch calibration work.

Lunar Contamination in AMSU-A

AMSU-A is a cross-track, step-scan instrument. In every 8 second period, it executes a cross-track scan with 30 Earth Field-of-Vews (FOVs) within ±48 degree from the nadir location, and post-launch coefficients estimation. Emphasis will be put on the derivation of the Lunar contamination results between those based on the pre-launch coefficients and the post-launch coefficients. Corresponding validation and comparison of the Lunar Contamination Correction results demonstrate the big improvements from the pre-launch calibration work.

Lunar Contamination in AMSU-A

AMSU-A is a cross-track, step-scan instrument. In every 8 second period, it executes a cross-track scan with 30 Earth Field-of-Vews (FOVs) within ±48 degree from the nadir location, and post-launch coefficients estimation. Emphasis will be put on the derivation of the Lunar contamination results between those based on the pre-launch coefficients and the post-launch coefficients. Corresponding validation and comparison of the Lunar Contamination Correction results demonstrate the big improvements from the pre-launch calibration work.

Lunar Contamination in AMSU-A

AMSU-A is a cross-track, step-scan instrument. In every 8 second period, it executes a cross-track scan with 30 Earth Field-of-Vews (FOVs) within ±48 degree from the nadir location, and post-launch coefficients estimation. Emphasis will be put on the derivation of the Lunar contamination results between those based on the pre-launch coefficients and the post-launch coefficients. Corresponding validation and comparison of the Lunar Contamination Correction results demonstrate the big improvements from the pre-launch calibration work.

Lunar Contamination in AMSU-A

AMSU-A is a cross-track, step-scan instrument. In every 8 second period, it executes a cross-track scan with 30 Earth Field-of-Vews (FOVs) within ±48 degree from the nadir location, and post-launch coefficients estimation. Emphasis will be put on the derivation of the Lunar contamination results between those based on the pre-launch coefficients and the post-launch coefficients. Corresponding validation and comparison of the Lunar Contamination Correction results demonstrate the big improvements from the pre-launch calibration work.

Lunar Contamination in AMSU-A

AMSU-A is a cross-track, step-scan instrument. In every 8 second period, it executes a cross-track scan with 30 Earth Field-of-Vews (FOVs) within ±48 degree from the nadir location, and post-launch coefficients estimation. Emphasis will be put on the derivation of the Lunar contamination results between those based on the pre-launch coefficients and the post-launch coefficients. Corresponding validation and comparison of the Lunar Contamination Correction results demonstrate the big improvements from the pre-launch calibration work.