Current status and plans of direct-readout LEO satellite data processing in NMSC/KMA

Dahye Bae¹, Hyunjong Oh, Ahyoung Shin, Yongsoo Kim and Jaemyeon Shim
Satellite Operation Division, National Meteorological Satellite Center(NMSC)
¹gooden@korea.kr

Abstract

National Meteorological Satellite Center(NMSC)/Korea Meteorological Administration(KMA) is processing various direct-readout Low-Earth-Orbit(LEO) satellite data such as Advanced TIROS Operational Vertical Sounder(ATOVs), Infrared Atmospheric Sounding Interferometer(IASI), Advanced Technology Microwave Sounder(ATMS) and Cross-track Infrared Spectrometer(GHS) radiance data for NWP data assimilation and weather analysis. Currently, NMSC is operating ATOVs and AVHRR Pre-processing Package(AAPP), Community Satellite Processing Package(CSPP) and International ATOVs Processing Package(AAPP) for direct readout data processing. KMA has provided the direct-readout ATOVs since 2009, IASI since 2017, ATMS and CrIS level 1c data of Suomi-NPP(NOPOESS Preparatory Project) satellite via GTS for Direct Broadcast Network(DBNet) activity since 2018, and is working on processing the direct-readout ATMS and CrIS data of NOAA-20 satellite which will be shared via GTS too. In this paper, we describe the current status and future plans of KMA's direct-readout LEO satellite data processing to support NWP assimilation including the quality check activities.

The status of satellite data reception of NMSC

- GEO Satellites: COMS-GK-2A, Himawari-8, FY-2E
- LEO Satellites: Terra/Aqua, NOAA-15/18/19/20, MetOp-A/B, S-NPP, DMSP COROLIS, GCOM-W1 etc.

Data processing packages operated by NMSC

Operation status of data processing packages for direct-readout data processing in NMSC
- AAPP Version 8.3(Installation ‘19. 3. 8.) ‘
- SPP: SDR Version 3.1(Installation ‘19. 10. 21.)

Realtime data distribution via GTS for DBNet
- ATOVS (since 2009), Metop-A/B IASI (since 2017) and S-NPP ATMS & CrIS (since 2018)

Quality verification of direct-readout NOAA-20 satellite data

- KMA’s direct-readout NOAA-20 ATMS/CrIS LID LI4F6 data
- Data: NOAA-20 ATMS/CrIS LID LI4F6 data
- Analysis method: To compare NMSC direct-readout data with MetOffice global data
- Geolocation differences of each pixels
- Brightness temperature differences of each pixels
- Verification criteria : distance difference within 5km, brightness temperature values within ± 0.1-0.2K

Satellite data utilization on the UM Model in KMA

- To make the ATMS/CrIS data of NOAA-20 be DBNet-operational
- To prepare direct-readout and process the MetOp-A/ATOVS & IASI data
- To improve the ATMS/CrIS granule combining process of global Suomi-NPP(data collected from EUMETCast) using AAPP
- To prepare EARIS direct-readout data processing (IASI, ATMS, CrIS) for NWP assimilation

Future plans

Reference

- Tiphane Labore, Lydia Lavantou, Keith Whyse, Nigel Atkinson and Pascal Brunel. AAPP documentation scientific description, 2017. NWP SAF
- Nigel Atkinson. Annex to AAPP scientific documentation: Pre-Processing of ATMS and CrIS, 2011. NWP SAF
- Tiphane Labore, Nigel Atkinson and Pascale Roquet. AAPP documentation software description, 2019. NWP SAF
- Installation instructions for the Community Satellite Processing Package(CSPP) V9RS, ATMS, and CrIS SDR Version 3.1 software for Suomi-NPP and NOAA-20(PSS-11), 2018. CISSM
- ATOVS Level 1b Product Guide, 2010. EUMETSAT
- Nigel Atkinson. AAPP Overview Document, 2017. NWP SAF
- Nigel Atkinson. AAPP Top Level Design, 2017. NWP SAF
- Nigel Atkinson. AAPP Installation Guide, 2019. NWP SAF
- Guide to the Direct Broadcast Network(DBNet), 2016. WMO