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4. Results: Impact on analysis (t=0)

2. Optimality condition
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— > ({2 \QREP T verified by TEMP RH
it can be shown that the optimality condition <Jﬁ ”> = <Jﬁ"> holds . Columns: cases 1) .full analysis* and 1) .single obs* | — >
if either: N | ’ | o ,:_ | »—1 noise estimate
A. J(x"t) has a minimum when xi"t is the analysis « Bottom graphs are normalised by Z TRF oy gl
or : - Our noise estimate for a stochastic sum 2. 4 is /¥, 4 |, e estimat
B. 1) All first guess departures are bias free and j noise estimate
. 1., o - _ = usually very similar qualitative behaviour for cases |) and Il).
)5, s PPIviEA] (P4 Ros) ™ (s~ wh) (e~ w) = (0 — o) (w2 - ) )
)Z-"”E”"' v.t:1] L ) (L‘: i) (W y},]_ \y y) y, ) = generally execellent agreememt for localised observations.
\ % (note functions need to be positive for good impact — compare definitions) 90 0 g n L '0
5. Py, t:af Below, (due to the limited space) only data for case 1) are shown. Fiqure 2 | 2utude latitude
(P*+R) = Cov. matrix(obs —fg) Ensemble Covariance i : e AMSU A (obs1) verified by GPSRO (obs2) only case )
verifying obs €< -> analysis obs AMSU-A verified by GPSRO R I 200y S0

] han 8 | v
. channels or g EEE oo
3- Can we ChQCk C0n3|3tenCy Of mOdel 8 & 11 : mostly significant positive impact ! i ggg
- - - 11 : weak performance near the equator [F & 400
covariances and observations more directly? P : otk
9 & 10 : weak performance particularly near |
Single obs case: (o —yo) T ot b\ f0 b poles. 0F
< {{Pfl- R >P v.tia] = <(yv: Yy ) (e - y”)> this can be explained by known model
E—— biases for the height of these channels 900000490090 :
Comparing estim. All quantities scaled by obs errors _ ure-3 latitude 7 latitude 7 latitude 7 latitude
covariances L T s
model vs obs: . | black:nb (number of points in equidistant bins) Dependance on the vertical distance between observations
red :nb * P (arbitrary units) - For localized obs. EFSOI statistics are dominated by very small distances (log(Ap) € [-0.1, 0.1], Fig.4).
Agreement is o0 : Taking averages: L f * For GPSRO those peaks in log(Ap)-space are substantially broader (Fig.5).
T 1) order all points (w3 =) (wi - o) « For AMSU A peaks are even broader and the normalized data exhibit no or strongly shifted peaks.
- generally good ol i 2) tT‘ke :‘r’]”g‘(')r(‘)g mean (see Fig.6) normalized data = largely linked to vert.structure of the GPSRO FG departure biases
to excellent for i :zz:lzzgth coo0 (¥~ ul) (w2~ o)) (weak performance of chan. 9 is mostly due to latitude depend. biases discussed above)
local obs. 2 | | 15 a — Performance of the different data types is consistent with the agreement with the ensemble covariances
_ ? R ! 2 -9 |\ pryy (comp.Sec.3 above).
« slightly more Figure 1(i) Plv.tol obs 2 2> «a (P’ + R..) e
prOblematiC obsl:AIREP T obs1:AIREP T obs1: AMSU A obs?2: GPSRO onlv case |
for GPSRO and particularly for satellite radiances wQbs2 TEMP T 1000 0D82:GPSRO | - | o / 0 )
[T T T : ﬁf)"'l"'l_ i I A B
3000/ ;ﬁ- E 101 40 = 50/
. obsl:A[REPT obSZ:GPSRQ . obs:AMSU ch.6  obs2: AIREP T obs:AMSU ch.6  obs2: TEMP T ,}000_ Iﬁm_ _ 20: 20- B8 i
I | bes3—— 71— 1 T 1 T T s ] ' I ' I ' u = I 1 OUC'_ N “0_ i i E:E:E:E:E”E:H..._;_ 0
2e+02 1M} 5‘0‘0_ __ 10‘ OI- 1‘-5'1'1" - L
I 0_ _2ﬂ_| L Ly ] -50
1e+02 -0, 04 0 0.4 -0.
I 0.4[ s rJSrma ize | 0.04r
0'01_513 \ N‘_ 0.3 normalized _ 0:03 i i " ggg
0.05] iy AV 0.2 1 o0s Mz i e B 6
I \ ] 0.1 . : ! i i
s I I' | ] - 'lh__‘.._. 0 E . | —ﬂ.ﬂZ | e 1 0015 N
- ' - - oo o0z 04 0 04 04 0 04 B AR L
Figure 1(ii) Plv.to] Figure 1(iii) Figure 1(iv) Figure 4 log(Ap) Figure 5 log(Ap) Figure 6 log(Ap) log(Ap)
vert.distance vert.distance vert.distance vert.distance vert.distance vert.distance

Summary and Discussion

« \We use observations for verification (Sommer and Weissmann, 2014)
but consider EFSOI type statistics as consistency relations ——

(obs —fg)  (obs — fg) The impact of Satellite radiances (AMSU A):
obs1 obs2

While the impact is overall positive, strong variations and negative impact is observed in some

* Generalising the method from Kalnay et al. (2012) | ensemble conditions. Important reasons are:
a verification function formalism corresponding to single obs cases covariances - The quality of ensemble covariances reduces with distance between the observations.
has been derived. - | , - less impact for strongly non-local observations.
So far results look very similar to the ,usual” EFSOI (proxy for denial experiments). - AMSU A biases opposite to model bias. Most regions with negative impact can be linked to
(obs — fg)-biases of radiances being opposite to those of the verifying observations (the latter
* Also a method to directly compare covariances from the ensemble and observations is explored. being dominated by model biases and couple to biases of the radiances).
« A statistical tool (software) has been developed which is flexible to generate conditional statistics
-- dependent on, eg., latitude, height, distance between observations, sun angle, .... References
-- comparing different observation types (e.g., conventional, satellite) - R H I__arllgland.a.nd N. L. Baker. Estimation of observation impact using the nrl atmosphericvariational data
-- comparing different parameters (e.g., temperature, humidity, velocities) simllnion el Sysiei. el s, S8 e 200 (200,
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* The impact (or agreement) of localized observations seems to be good to excellent. - M. Sommer and M. Weissmann. Observation impact in a convective-scale localized ensemble transform Kalman

« Also for GPSRO generally good agreement is observed filter. Quarterly Journal of the Royal Meteorological Society, 140(685):2672—-2679 (2014).
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