RTTOV development status

James Hocking, Roger Saunders, Peter Rayer, David Rundle, Pascal Brunel, Jérôme Vidot, Pascale Roquet, Marco Matricardi, Alan Geer, Cristina Lupu

ITSC-19, Jeju Island, March 2014

© Crown copyright Met Office
What is RTTOV?

RT model for required sensor

Estimate of atmospheric state and surface parameters for observation point \(X \)

Viewing and sun angles

Radiances for required satellite channels \(y = H(X) \) and optionally Jacobians as TL, AD, or K

\[
H' \equiv \frac{\partial y_i}{\partial X_j}
\]
RTTOV v11.1 – released May 2013

- VIS/NIR clear-sky (and simple cloudy) simulations
- Land surface reflectance (BRDF) atlas
VIS/NIR clear-sky/simple cloud

Simple cloud => input single CTP and cloud fraction
Output is linear combination of clear-sky and cloud-top radiances, making some basic assumption about cloud top reflectivity.

SEVIRI 0.6µm observations (left) and simulations (right)
RTTOV v11.1 – released May 2013

- VIS/NIR clear-sky (and simple cloudy) simulations
- Land surface reflectance (BRDF) atlas
- NLTE bias correction (AIRS/CrIS/IASI)
- PC-RTTOV extended to cloudy profiles over sea
- IR scattering simulations:
 - Two new aerosol particle types (volcanic ash, Asian dust)
 - New parameterisation for ice clouds
 - Option to input scattering parameters explicitly
- New interpolation option
• Option to treat surface as Lambertian for MW sensors
• SSU coefficients accounting for time-variation of CO2 cell pressure in the instrument
• Coefficients in HDF5 format
• Optimisation of K model for v7 predictor coefs
• Optimisation of IR emissivity atlas in speed and memory usage
New coefficient levels

- 51L had extra levels added by hand: leads to features in Jacobians.
- New 54L derived from analytic formula: better resolution everywhere except ~1-10hPa.
Latest coefficients – MW

• Liebe-MPM 89/92, no-Zeeman code with O2, N2, WV and optionally climatological O3

• ECMWF 83 profile set

• RTTOV-7 predictors on 54 levels

• Zeeman coefficients for SSMI/S and AMSU-A also available; there is on-going work on Zeeman coefs

New files:

• AMSU-A with shifted frequencies for channels 6-8

• GPM GMI

• Nimbus-7 SMMR
Latest coefficients – VIS/IR

• LBLRTM v12.2, AER v3.2, MT_CKD_2.5.2; ECMWF 83 profile set
• Coefficients on 54 levels; also 101L for hi-res IR sounders

New files:

• Solar-compatible files for many GEO and LEO sensors including: ABI, AHI, AVHRR, MODIS, MTSAT imager, SEVIRI, VIIRS.
• Updated v9 predictor hi-res IR sounder files (O3, CO2, CO, CH4, N2O)
• MTG-FCI, IASI-NG
• Nimbus-4 IRIS, SSU PMC-shift files (PMR coefs are in pipeline)
• MODIS and HIRS with shifted channels

HDF5 is becoming the preferred format for disseminating hi-res IR sounder coefficients.
• Further improvement to interpolation
• FASTEM-5: improvements to treatment of azimuth angle
• Optimisation (speed) of K model for v8 and v9 predictor coefs
• Optimisation (speed and memory usage) for IR scattering simulations, especially with cloud (~20-30% faster and ~50% memory usage in direct/TL/AD/K)
• Optimisation (speed) for PC-RTTOV simulations
• Coefficient I/O more flexible
• Test suite profiles updated: now based on US76 standard atmospheres.
• Bug fixes.
RTTOV v12 – due end 2016

- Accurate VIS/NIR multiple-scattering model
- SO2 as optional trace gas
- Improved ice cloud parameterisation for IR scattering
- Updated IR sea surface emissivity model
- Improvements to IR emissivity atlas (view-angle correction)
- IR emissivity and BRDF atlases moved to HDF5 format
- Optimisation
- Retire old interpolation options
- Retire old IR ice cloud parameterisations based on effective diameter
NWP SAF website is being moved to new servers:

http://nwpsaf.eu/

Bug fixes are posted on the RTTOV v11 web page:

Web page dedicated to RTTOV v11 coefficients most of which are compatible with RTTOV v10:

Feedback always welcome – including suggestions for new/modified content on the new site.
NWP SAF forums
The NWP SAF is a EUMETSAT-funded activity that exists to co-ordinate research and development efforts among the SAF partners to improve the interface between satellite data and NWP for the benefit of EUMETSAT member states.

The NWP SAF website can be found at http://nwpsaf.org

| BOARD INDEX |
|-------------|-----------------|------------------|------------------|
| | TOPICS | POSTS | LAST POST |
| RTTOV 11 | | | |
| Version 11 of RTTOV was released in June 2013. This is the most recent version of RTTOV. | 10 | 14 | by james.hocking G Fri Oct 18, 2013 8:54 am |
| RTTOV 10 | | | |
| Version 10 of RTTOV was first released in January 2011, but users are advised that this version of RTTOV has now been superseded by RTTOV v11, which should be used in preference to RTTOV v10. | 42 | 95 | by roger.saunders G Mon Dec 23, 2013 12:45 pm |
| Older versions | | | |
| Older versions of RTTOV should be discussed here. | 14 | 22 | by malilja G Thu Jan 09, 2014 12:50 pm |
| APP | | | |
| APP Announcements | | | |
| | 28 | 41 | by nigel.bakinson G Mon Feb 24, 2014 9:30 am |
| APP General Discussion | | | |
| | 15 | 31 | by stephan.finkenspeier G Mon Feb 24, 2014 3:26 pm |

WHO IS ONLINE
In total there are 3 users online: 1 registered, 0 hidden and 2 guests (based on users active over the past 5 minutes)
Most users ever online was 22 on Sat Mar 16, 2013 4:44 am
Registered users: james.hocking
Legend: Administrators, Global moderators

STATISTICS
Total posts 206 • Total topics 115 • Total members 137 • Our newest member krismiano

Disclaimer:
The views expressed in these forums are those of the individual contributors and are not necessarily those of EUMETSAT or the NWP SAF Consortium. Neither EUMETSAT nor the NWPSAF Consortium are responsible for the content of any external internet sites.
Thanks for your attention

Questions?
Table shows RMS differences of simulated AMSU-A BTs using 101L coefficients vs 51L/54L coefficients for 52 diverse profile set.

<table>
<thead>
<tr>
<th>Channel</th>
<th>51L coefs</th>
<th>54L coefs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.102</td>
<td>0.064</td>
</tr>
<tr>
<td></td>
<td>0.063</td>
<td>0.042</td>
</tr>
<tr>
<td></td>
<td>0.091</td>
<td>0.065</td>
</tr>
<tr>
<td></td>
<td>0.047</td>
<td>0.031</td>
</tr>
<tr>
<td></td>
<td>0.026</td>
<td>0.019</td>
</tr>
<tr>
<td></td>
<td>0.035</td>
<td>0.029</td>
</tr>
<tr>
<td></td>
<td>0.032</td>
<td>0.030</td>
</tr>
<tr>
<td></td>
<td>0.026</td>
<td>0.024</td>
</tr>
<tr>
<td></td>
<td>0.058</td>
<td>0.047</td>
</tr>
<tr>
<td></td>
<td>0.093</td>
<td>0.056</td>
</tr>
<tr>
<td></td>
<td>0.138</td>
<td>0.100</td>
</tr>
<tr>
<td></td>
<td>0.147</td>
<td>0.147</td>
</tr>
<tr>
<td></td>
<td>0.069</td>
<td>0.220</td>
</tr>
<tr>
<td></td>
<td>0.125</td>
<td>0.237</td>
</tr>
<tr>
<td></td>
<td>0.131</td>
<td>0.086</td>
</tr>
</tbody>
</table>
Latest coefficients – VIS/IR

- LBLRTM v12.2, AER v3.2, MT_CKD_2.5.2
- ECMWF 83 profile set
- RTTOV-7 predictors (O3) on 54 levels and on 101 levels for AIRS/IASI/CrIS/IASI-NG (IR only)
- RTTOV-8 predictors (O3, CO2) for SSU, HIRS, hi-res sounders (IR only)
- RTTOV-9 predictors (O3) on 54 levels for VIS/IR instruments (solar-compatible)
- RTTOV-9 predictors (O3, CO2, CO, CH4, N2O) on 101 levels for AIRS/IASI/IASI-NG, CrIS coefs forthcoming, (solar-compatible)