Indian Satellites for Meteorological Observations

Ashim Kumar Mitra

Ministry of Earth Sciences
India Meteorological Department
New Delhi-INDIA
26th March -1st April 2014
Satellite Meteorology branch of IMD really started in 1982 with the launch of INSAT-1A which was a multipurpose satellite meant for services to Meteorology, Doordarshan and Communication. Before that Indian meteorologists were using analog imageries received from U.S. Polar orbiting satellites series of TIROS-N.

Many satellites for meteorological purposes were launched after the launch of INSAT-1A as given below:

- **INSAT-1A** – 10 April 1982
- **INSAT-1B** – 30 Aug., 1983
- **INSAT-1C** – 21 July 1988
- **INSAT-1D** – 12 June, 1990
- **INSAT-2A** – 10 July, 1992
- **INSAT-2B** – 23 July, 1993
- **INSAT-2E** – 03 April 1999
- **KALPANA-1** – 12 Sept. 2002
- **INSAT-3A** – 10 April 2003

<table>
<thead>
<tr>
<th>Two Channel VHRR</th>
<th>Three Channel VHRR</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSAT-1A – 10 April 1982</td>
<td>KALPANA-1 – 12 Sept. 2002</td>
</tr>
<tr>
<td>INSAT-1B – 30 Aug., 1983</td>
<td>INSAT-3A – 10 April 2003</td>
</tr>
</tbody>
</table>
Current Indian Geostationary Meteorological Satellites

Kalpana-1

INSAT-3D:2013

INSAT-3A
The GEO Imaging Satellite (GISAT) will carry a GEO Imager with multi-spectral (visible, near infra-red and thermal), multi-resolution (50m to 1.5 km) imaging instruments.
INSAT - 3D: Main sensors

6 Channel IMAGER

- Spectral Bands (μm)

 - Visible: 0.55 - 0.75
 - Short Wave Infra Red: 1.55 - 1.70
 - Mid Wave Infra Red: 3.80 - 4.00
 - Water Vapour: 6.50 - 7.10
 - Thermal Infra Red – 1: 10.30 - 11.30
 - Thermal Infra Red – 2: 11.50 - 12.50

- Resolution

 - 1 km for VIS, SWIR
 - 4 km for MIR, TIR
 - 8 km for WV

19 Channel SOUNDER

- Spectral Bands (μm)

 - Short Wave Infra Red: Six bands
 - Mid Wave Infra Red: Five Bands
 - Long Wave Infra Red: Seven Bands
 - Visible: One Band

- Resolution (km)

 - 10 x 10 all bands

- No of simultaneous sounding per band

 - Four

Launch: July-2013

Location: 82° E
NINETEEN CHANNEL ATMOSPHERIC SOUNDER
with a resolution of 10 km at Sub-Satellite

<table>
<thead>
<tr>
<th>Channel No.</th>
<th>Central Wavelength (in μm)</th>
<th>Principal absorbing constituents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14.71</td>
<td>CO₂ – band</td>
</tr>
<tr>
<td>2</td>
<td>14.37</td>
<td>CO₂ – band</td>
</tr>
<tr>
<td>3</td>
<td>14.06</td>
<td>CO₂ – band</td>
</tr>
<tr>
<td>4</td>
<td>13.64</td>
<td>CO₂ – band</td>
</tr>
<tr>
<td>5</td>
<td>13.37</td>
<td>CO₂ – band</td>
</tr>
<tr>
<td>6</td>
<td>12.66</td>
<td>water vapor</td>
</tr>
<tr>
<td>7</td>
<td>12.02</td>
<td>water vapor</td>
</tr>
<tr>
<td>8</td>
<td>11.03</td>
<td>window</td>
</tr>
<tr>
<td>9</td>
<td>9.71</td>
<td>ozone</td>
</tr>
<tr>
<td>10</td>
<td>7.43</td>
<td>water vapor</td>
</tr>
<tr>
<td>11</td>
<td>7.02</td>
<td>water vapor</td>
</tr>
<tr>
<td>12</td>
<td>6.51</td>
<td>water vapor</td>
</tr>
<tr>
<td>13</td>
<td>4.57</td>
<td>N₂O</td>
</tr>
<tr>
<td>14</td>
<td>4.52</td>
<td>N₂O</td>
</tr>
<tr>
<td>15</td>
<td>4.45</td>
<td>CO₂</td>
</tr>
<tr>
<td>16</td>
<td>4.13</td>
<td>CO₂</td>
</tr>
<tr>
<td>17</td>
<td>3.98</td>
<td>window</td>
</tr>
<tr>
<td>18</td>
<td>3.74</td>
<td>window</td>
</tr>
<tr>
<td>19</td>
<td>0.69</td>
<td>vis</td>
</tr>
</tbody>
</table>

Only Sounder in Geostationary orbit, after GOES

- Temperature and humidity profile
- Total Ozone and Ozone profile
- Derived products

Scan time: A: 6 x 5 = 30 Frames x 1.8 min = 54 min
 B: 4 x 7 = 28 Frames x 1.8 min = 51 min

- This sounding repeated every hour over land (A)
- Every 6th hour sounding over Ocean (B)
- Best suited for nowcasting over land and NWP
Oceansat-II

- **Instruments:**
 - Scatterometer Ku band
 - Ocean Color Monitor (8 bands 0.4-0.885 μm)
 - Radio Occultation ROSA
- **Launched**
 - 23 September 2009
- **Applications:**
 - Sea State Forecast: Waves, Circulation and MLD
 - Monsoon and Cyclone Forecast
 - Antarctic Sea Ice
 - Fisheries and Primary productivity estimation
 - Monitoring of Phytoplankton blooms
 - Sediment dynamics

<table>
<thead>
<tr>
<th>Scatterometer Specifications</th>
<th>Inner Beam</th>
<th>Outer Beam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attitude</td>
<td>720 km</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>13.515 GHz</td>
<td></td>
</tr>
<tr>
<td>PRF</td>
<td>200 Hz</td>
<td></td>
</tr>
<tr>
<td>Wind speed range</td>
<td>4 to 24 m/sec</td>
<td></td>
</tr>
<tr>
<td>Wind speed accuracy</td>
<td>Better than 20% (rms)</td>
<td></td>
</tr>
<tr>
<td>Wind direction accuracy</td>
<td>20° (rms)</td>
<td></td>
</tr>
<tr>
<td>Polarization</td>
<td>HH</td>
<td>VV</td>
</tr>
<tr>
<td>Swath</td>
<td>1400 km</td>
<td>1840 km</td>
</tr>
<tr>
<td>Elevation angle</td>
<td>42.62°</td>
<td>49.38°</td>
</tr>
<tr>
<td>Incidence angle</td>
<td>48.90°</td>
<td>57.60°</td>
</tr>
<tr>
<td>Footprint</td>
<td>26 x 46 km</td>
<td>31 x 65 km</td>
</tr>
<tr>
<td>Scanning rate</td>
<td>20.5 rpm</td>
<td></td>
</tr>
</tbody>
</table>

Scatterometer Observational Geometry

Sub-satellite track
Oceansat-2 Scatterometer winds overlaid on KALPANA Image

Altika Mission: Belongs to the global altimetry system for the precise and accurate observations of ocean topography, circulation and sea surface monitoring with same accuracy as ENVISAT and complementary to the JASON-2 mission. Launched in Feb, 2013 by PSLV C-20.

Altika Payload:

- A Ka-band (35.75 GHz, BW 500 MHz) radar altimeter
- A dual-frequency MW radiometer (23.8 and 37 GHz), for tropospheric range correction
- DORIS: For achieving adequate orbitography performances
- LRA: For Orbitography and system calibration

Altika/SARAL central objective:

- Ocean meso-scale variability: Sea state Monitoring & Now Casting
- Data assimilation: Sea state forecasting
- Coastal altimetry: (Bathymetry, coastal upwelling & circulations etc.)

Other Objectives:

- Operational oceanography
- Continental waters
- Inland ice sheet monitoring
- Light rainfall and clouds climatology
- Climate Change: Mean sea level
- Geodetic reference system determination
- Geophysical and geological investigations

Satellite Description:
- Sun-synchronous, polar orbiting, inclination: 98.38 Deg.
- Altitude: ~800 km,
- Repeat cycle: 35 days
Acknowledgment

Authors are very much grateful to Director General of Meteorology, IMD, New Delhi, for his keen interest and providing all facilities to attend the workshop.

The first author thanks Mitchell Goldberg and Neils Bormann for the kind support to attend the workshop.
Thanks