Vertical Covariance Localization for Satellite Radiances in Ensemble Kalman Filters

William F. Campbell
Craig H. Bishop
Daniel Hodyss
NRL Monterey, CA

International TOVS Study Conference 17, Monterey, CA -- April 19, 2010
What is an EnKF?

• For both the variational and Kalman filter approaches to data assimilation, the analysis equation looks like

\[
K \equiv P_b H^T \left(H P_b H^T + R \right)^{-1}
\]

\[
\tilde{x}_a = \tilde{x}_b + K \left(\tilde{y} - \mathcal{H}(\tilde{x}_b) \right)
\]

• In (unlocalized) EnKFs, the background error covariance is replaced by the sample error covariance below, where the k columns of X are the perturbation state vectors of each ensemble member

\[
P^f_j = X_j X_j^T
\]
Spurious correlations limit the utility of unlocalized EnKFs, especially when the number of ensemble members is much less than the number of state variables. The sample error covariance can be localized

- in **model space** (Eq. 1)

\[
K_j = \left[\left(\rho \odot P_j^f \right) H^T \right] \left[H \left(\rho \odot P_j^f \right) H^T + R \right]^{-1}
\]

- or in **observation space** (Eq. 2)

\[
K_j = \left[\rho \odot \left(P_j^f H^T \right) \right] \left[\rho \odot \left(H P_j^f H^T \right) + R \right]^{-1}
\]
We will show why a widely-used covariance localization method for EnKFs has difficulty with satellite radiances:

1) **Integrated measures have no well-defined location.**

2) **Because neighboring satellite channels have broad, overlapping weighting functions, the radiance perturbations measured by these channels are correlated; any localization that removes these correct correlations will be suboptimal.**

3) **If the localization in the vertical is significantly broader than the radiance correlation length, spurious correlations will remain; if it is *not* significantly broader, correct correlations will be eliminated. Because typical weighting functions cover a significant fraction of the model atmosphere, there may be no middle ground.**
• 30 NOGAPS levels
• NAVDAS forecast error covariance for temperature (assume variance of 1.0 K2)
• AMSU-A analogs to channels 6-11
• Localization widths are tuned to give the best results for each observation error variance, ensemble size, and type of localization
Temperature Localization

Gaspari-Cohn Localization (c=0.46)

- Localization
- 16-member Sample Covariance
- Localized Covariance
- True Covariance

Gaspari-Cohn Localization (c=1.00)

- Localization
- 16-member Sample Covariance
- Localized Covariance
- True Covariance

Gaspari-Cohn Localization (c=1.38)

- Localization
- 16-member Sample Covariance
- Localized Covariance
- True Covariance

100 hPa Temperature Covariance (°K^2)
• In **model space**, distance is well-defined

• **What is the distance between channel 1 and channel 2?**

• One commonly used approximation is the distance between the peaks of the weighting functions—the radiances in each channel are assigned to a particular location in **model space**

• The result is that after **observation space localization**, each channel can correct only one model level
AMSU-A Channel 9
Radiance Localization

Gaspari-Cohn Localization (c=0.46)

Gaspari-Cohn Localization (c=1.00)

Gaspari-Cohn Localization (c=1.38)

AMSU-A Channel 9 Radiance Covariance (°K²)

AMSU-A Channel 9 Radiance Covariance (°K²)

AMSU-A Channel 9 Radiance Covariance (°K²)
Experimental Design

• 100,000 trials, 4 ensemble sizes (8, 16, 32, and 64), 7 observation error variances (10^1, 10^0, 10^{-1},... 10^{-5})

• For each trial, a forecast error and observation error are generated, and the localization methods are applied with a range of localization widths (from 0.1 to 2.3 units in Log_{10} pressure (hPa))

• The mean square analysis error normalized by the mean square forecast error, averaged over all trials, is plotted against the log of the observation error variance for each ensemble size for the optimal localization width

• 99% confidence intervals are shown
Normalized Analysis Error with Optimal Localization Width

- **a)** 8 members
 - Analysis error vs. Log$_{10}$ of observation error variance
 - Theory, Unlocalized, Model Space, Radiance Space

- **b)** 16 members
 - Analysis error vs. Log$_{10}$ of observation error variance
 - Theory, Unlocalized, Model Space, Radiance Space

- **c)** 32 members
 - Analysis error vs. Log$_{10}$ of observation error variance
 - Theory, Unlocalized, Model Space, Radiance Space

- **d)** 64 members
 - Analysis error vs. Log$_{10}$ of observation error variance
 - Theory, Unlocalized, Model Space, Radiance Space
• Given as many independent satellite radiances as vertical levels, the analysis error should tend to zero as the observation error variance tends to zero
• 30 AMSU-A analogs with overlapping weighting functions
• Look at the 16-member case, which has insufficient rank for the unlocalized EnKF to be useful, and repeat the experiments
Normalized Analysis Error (c=0.40)

16 members

- Line: Theory
- Green line: Unlocalized EnKF
- Red line: Model Space Localization
- Cyan line: Radiance Space Localization

Log_{10} of observation error variance

Normalized Analysis Error
Summary

- Distance and location are not well-defined for integrated measures.
- Broad satellite weighting functions force observation space localization functions to either be so broad that they lose effectiveness, or so narrow that true inter-channel covariances are suppressed or eliminated.
- Both problems contribute to the systematically worse performance of observation space localization in our 1D experiments.
- Failure to convergence to zero analysis error in the presence of perfect observations is another troubling feature of observation space localization.
Conclusions

- Although observation space localization is significantly more computationally efficient than model space localization, there are existing methods that are computationally feasible and localize in model space (e.g. Buehner 2005, Bishop and Hodyss 2009)

- We recommend that users weigh carefully the computational performance gains they expect relative to the drawbacks demonstrated here

- We gratefully acknowledge the support of funding from NOAA, ONR, and NRC, in particular ONR Project Element 0602435N, Project BE-435-003, ONR Grant N0001407WX30012 and from NOAA THORPEX grant NA04AANRG0233

- Thanks also to Peter Houtekamer and our MWR reviewers and editor for their helpful comments