CM-SAF water vapour and temperature products from ATOVS

Nathalie Courcoux, Marc Schröder

Deutscher Wetterdienst

email: nathalie.courcoux@dwd.de
Web: www.cmsaf.eu
Overview

- CM-SAF overview
- CM-SAF water vapour and temperature products
- ATOVS processing scheme at CM-SAF
- Validation process and validation results
- Reprocessing
- Conclusion
The aim of the Satellite Application Facility on Climate Monitoring is to generate, archive and distribute widely recognised high-quality satellite-derived products and services relevant for climate monitoring in operational mode.

- Cloud, radiation, water vapour and temperature products derived from different instruments are available.

- Poster 6.11 by Nathalie Selbach summarizes all our available products.
CM-SAF data products can be distinguished in operational monitoring products and retrospectively produced data sets.

Operational monitoring products are disseminated with high timeliness (max 8 weeks after the observation) to support operational climate monitoring applications of the national meteorological and hydrological services.

Because of the timeliness requirement it is not possible to monitor interannual variability and trends. Bias error due to orbit shift and decay, as well as intersatellite biases are not corrected for the operational products.

For the retrospective produced data sets errors due orbit changes and intersatellite biases are minimised.
CM-SAF water vapour and temperature products

- CM-SAF water vapour and temperature products are derived from the ATOVS instruments.

- In total 28 products are available as global daily and monthly means in a Behrmann cylindrical equal area projection.

 - Vertically integrated water vapour of the atmospheric column from the surface to 100 hPa.

 - Layered vertically integrated water vapour, layered mean temperature, and layered relative humidity on 5 layers (300 to 200 hPa, 500 to 300 hPa, 700 to 500 hPa, 850 to 700 hPa, and surface to 850 hPa).

 - Temperature and water vapour mixing ratio at 6 pressure levels (200 hPa, 300 hPa, 500 hPa, 700 hPa, 850 hPa, and 1000 hPa).
Examples of CM-SAF water vapour and temperature products

Layered vertically integrated water vapour for the 5 layers.
CM-SAF operationally uses the International ATOVS Processing Package (IAPP) to carry out the inversion from ATOVS radiances to humidity and temperature profiles.

The ATOVS level L1d data generated by the ATOVS and AVHRR Processing Package (AAPP) are used as input for the IAPP.

Output of the Deutscher Wetterdienst Global-Modell (GME) are used as first guess input to the retrieval.

A Kriging routine is used to determine daily and monthly means on a global grid from the swath based retrievals, as well as uncertainties estimates.
The ATOVS processing scheme at CM-SAF

FindATOVS_Data.pl
FAD
Csobank-Call, gets Level 1c ATOVS data in Bufr-Format for 3 days (incremental)

PrepATOVSData.pl
PRE
ConvATOVS_I1c_I1d.pl
convert ATOVS level 1c data from Bufr-Format to AAPP level 1d data for 1 slot
sat_gebtit (x)
 sat_abctit (x)
 sat_atvp (x)
atovpp.exe (x)

aapp_sort_hirs
sorts ATOVS level 1d data in AAPP format to NWP dates (1.5 hours around NWP dates, no data shift, no double entries in file) for each day

ProcATOVS.pl
PAD
run IAPP.pl
run IAPP with the required input parameters

iapp_main
lapp_atovs_qual
quality checks of Level2 IAPP output and writes quality controlled Level 2 data in netcdf-file

iapp_atovs_hcp_gen
generation of instantaneous Level 3 HCP products

FindNWPDataATOVS.pl
FND
Csobank-Call, gets required variables for GME analysis dates for each day to be calculated with IAPP, output in GRIB file

PrepNWPDataATOVS.pl
PND
converts grb-file and calculates all needed variables, writes NWP file in format needed by IAPP

iapp_calc_pressure
calculate pressure levels from values given in GRIB file

iapp_vert_interpol
vertical interpolation of Temperature and Humidity profile on required vertical grid

iapp_calc_rh2m
calculate relative humidity in 2m

iapp_calc_pw
calculate Total Precipitable Water

iapp_nwp_writencdf
writes NWP file in required netcdf-structure

iapp_vert_interpol
vertical interpolation of Temperature and Humidity profile on required vertical grid

iapp_atovs_hcp_gen
generation of instantaneous Level 3 HCP products

ConvATOVS_l1c_l1d.pl
convert ATOVS level 1c data from BUFR-Format to AAPP level 1d data for 1 slot
sat_gebtit (x)
sat_abctit (x)
sat_atvp (x)
atovpp.exe (x)

iapp_atovs_hcp_gen
generation of instantaneous Level 3 HCP products

Read_Swath_Atovs
prepare ATOVS derived products in swath format

Comp_CorrLength
calculate correlation length

Perf_Kriging
perform the Kriging

Perf_Output
re-normalize the Kriging result and write output files

PostProcATOVS.pl
PPA
rename all instantaneous data (from runIAPP.pl output) and on last day transform daily and monthly means to hdf-format and rename to official CM-SAF product name

Legend:
1 = Standard software at DWD from FE12
CM = Chain Module
M = Module (Unit)

ITSC-17, 16th of April 2010, Monterey, CA
Examples of CM-SAF water vapour and temperature products

Vertically integrated water vapour.
Number of observations per grid points.
Extra daily standard deviation.
The ATOVS validation at CM-SAF

- CM-SAF temperature and humidity products have to meet the service specifications that are defined for each product.

- To check whether the CM-SAF temperature and humidity products comply with the given service specifications they are validated against radiosonde observations that meet the quality standard of the GCOS Upper Air Network (GUAN). 173 GUAN stations are available.

- The validation process do not account for the spatiotemporal mismatch of radiosonde and satellite observations, nor for the radiosonde errors.
Time series of the bias and bias corrected RMSE between TPW from ATOVS and radiosondes.
Time series of the bias (left) and bias corrected RMSE (right) between LPW 1-5 from ATOVS and radiosondes.
Time series of the bias (left) and bias corrected RMSE (right) between T1-5 from ATOVS and radiosondes.
Reprocessing 1999-2010

- Reprocessing from 1999 until now, all on the same system and with the same software versions.

- Using the ERA interim fields as first guest input instead of the GME fields.

- Using as many of the ATOVS data as we can.
Conclusion and outlook

- The CM-SAF temperature and humidity products exhibit high quality.

- Implementation of the use of the data collected by the ATOVS instruments onboard the MetOp and NOAA-19 satellites into the processing scheme.
- Reprocessing of the ATOVS products from 1999 is ongoing work.