CO₂ Slicing Method for IASI

Arlindo Arriaga, Peter Schlüssel, Xavier Calbet
Thomas August, Olusoji Oduleye, Tim Hultberg

European Organisation for the Exploitation of Meteorological Satellites
(www.eumetsat.int)
IASI algorithms ← recommended methods from ISSWG
- Cloud detection within IFOV → profile retrievals
- CTP retrieval ← CO₂ slicing method (Smith and Frey, 1990)

Prototyping Processing Facility for IASI L2 products (MET division)
- Implement methods, optimise algorithms & coefficients

- Input:
 - ECMWF (or ATOVS) co-located profiles & T_{skin}
 - IASI L1 radiance, surface emissivity, RTIASI-4, auxiliary file (list of channels)

- Output:
 - CTP and CFR → iterative profile retrieval
Algorithm

\[X_{k,n} = \frac{R^\text{clear}_k}{R^\text{clear}_\text{ref}} - \frac{R^\text{cloudy}_k}{R^\text{cloudy}_\text{ref}} - \frac{R^B_k(p_n)}{R^\text{clear}_\text{ref}} - \frac{R^B_k(p_n)}{R^\text{clear}_\text{ref}} \]

\[P_k = P(\min(|x_{k,n}|)) \]

\[P_c = \sum_{k=1}^{M} w_k^2 P_k \]

CO₂ channel selection
Algorithm implementation

Non noisy radiance

\[
\begin{align*}
(R_{\text{cloudy}} - R_{\text{w}}^B(p_{\text{suf}})) & \geq RN_{\text{ref}} \cdot SNR \cdot NE\delta E_{\text{ref}} & \text{with} & \quad SNR = 3 \\
(R_{\text{clear}} - R_{\text{cloudy}}) & \geq SNR \cdot \sqrt{2} NE\delta E_{\text{ref}} & \text{and} & \quad (R_k - R_{\text{cloudy}}) & \geq SNR \cdot \sqrt{2} NE\delta E_k
\end{align*}
\]

- Search profile for inversions below 500 hPa (flag levels \(p_i \))
- Flag levels \(p_n \) with noisy cloud signal \(R_{\text{ref}}(p_n) \) → skip levels \(p_n, p_i \)

- Retrieve cloud top pressure \(P_k \) with a single CO\(_2\) channel
 Calculate effective \(C_{fk} \) using the window channel → exclude channel \(k \) if \(C_{fk} \) outside \((0,1]\)

- CTP histogram from single channel retrievals
 - Retrieved \(P_c \) as in Smith and Frey ↔ \(P_k \) in most populated class
 - If inversion exists and \(P_c > 600 \text{ hPa} \) → use \(P_k \) below inversion basis only
 - Effective cloud fraction \(C_f \) ↔ \(P_c \) and window channel
 - \(P_c \) and \(C_f \) delivered if \(C_f > 10\% \)

(Other results for quality control: \(P_k \) rms, \(\Delta P_k \), \(\delta P_c \) from NE\(\delta R \) and T error, Number of channels used)
window: 990.50 cm$^{-1}$ (11.10494 μm) reference: 796.75 cm$^{-1}$ (12.55099 μm)

Retrievals of 53980 scenarios (RTIASI) \rightarrow 41 CO$_2$ channels (707.50 – 756.00 cm$^{-1}$)

- Two global data sets (all cloud fractions, surface types, day/night, seasons)
 - (A) single level black clouds and (B) multilevel, water/ice clouds, 6 types

![CTP of highest cloud (data set B)]
Retrievals with single channel $k \leftarrow 545$ IASI frequencies (645.0 to 781.0 cm$^{-1}$)

Significance of channel k: Q% scenarios \{k NOT used OR error \geq critical E\}

Given a critical error E_n identify (among 545 channels) the set M_{ni} of channels with a pre-defined Q_i and find the set S_{ni} of scenarios left with no channels

\{\text{En} < 100 \text{ hPa}, \text{Sn} \leq 1\%\} \iff Q_i = 10\% \Rightarrow \text{exclude 498 (A) [264 (B) channels]}
Statistics of retrievals (data set B) using 41 or 281 CO₂ channels

| Layer (100, 400] hPa | 41 chs: 34383 | 20780 | 12.5 | 61.8 |
| Layer (400, 800] hPa | 281 chs: 35848 | 21101 | 19.6 | 68.9 |

- Layer (100, 400] hPa:
 - 41 channels: 34383 retrievals
 - 20780 retrievals, bias = 12.5, RMSE = 61.8
 - 21101 retrievals, bias = 19.6, RMSE = 68.9

- Layer (400, 800] hPa:
 - 281 channels: 35848 retrievals
 - 9128 retrievals, bias = -0.4, RMSE = 67.6
 - 9496 retrievals, bias = 8.8, RMSE = 94.3

Algorithm: CO₂ channel selection

Validation: EUMETSAT
Frequency (%) of retrievals vs. cloud cover of highest cloud
(data set with multilevel water/ice clouds, six types)

34383 retrievals
41 CO$_2$ channels

35848 retrievals
281 CO$_2$ channels
Consistency with AVHRR images: frontal system & post frontal convection (north Atlantic)
Algorithm

CO$_2$ channel selection

Validation (1b)

Consistency with AVHRR images: frontal system (western south Pacific)
Consistency with AVHRR images:
post frontal squall-line and cumulus clouds organised as open cells (western north Atlantic)
Metop sounding campaign
Lindenberg Observatory (near Berlin)
Jun-Aug (+Sep) 2007

180 overpasses (~9 AM, ~8 PM) with IASI data
Co-located ECMWF forecasts (profiles, T_{skin})
Co-located surface emissivity (as in PPF)

Cloud data: type & CFR (overpass time) + CTP
Observer (Jun-Aug) and AVHRR images
Cloud radar (1 min-integrated) reflectivity + Sounding

CTP from radar measurements (zenith):
CTP = mode of radar samples
within a sampling time interval
(200-400 hPa wind) / 7 km (~ IFOV radius)

Algorithm
CO$_2$ channel selection

Validation
Mean of retrieved CTP (and CFR) within IASI IFOVS up to
7 km of Lindenberg 50 km of Lindenberg if CTP in \([P_R-100, P_R+100]\)
All 82 cases: bias = 29.4 hPa std = 49.2 hPa
72 cases (CFR > 40%): 25.1 45.9

Lindenberg (< 7 km, triangles) or neighbourhood mean (< 50 km, squares)

Cloud layer: single (.) or multiple (+)

Corr. coeff. = 0.978
F-test = 1746.766
F(0.01,1,80) = 6.963

Validation (4)
66 cases (Jun-Aug): CFR bias = -6.2% CFR std = 22.4%
(with respect to cloud cover reported by the observer)
Relative frequency (%) of retrievals (10 layers)
Relative frequency (%) of non-retrieved cases
Cloud fraction: cyan[0–0.2], pink[0.2–0.4], blue[0.4–0.6], green[0.6–0.8], red[0.8–1]