Towards the assimilation of cloudy radiances

N. Fourrié, M. Dahoui*¶ and F. Rabier

CNRM/GAME

* Moroccan Meteo

¶PhD defended on 19 June 2006 in Toulouse, France
Status of the AIRS clear sky radiances assimilation at METEO France

with contrib of Thomas Auligne, D. Lacroix, P. Poli, V. Guidard F. Rabier, N. Fourrié M. Sczczech-Gajewska, H. Zhang, A. Babqiqi, F. Karbou

- In operations
 - 20 stratospheric channels operationaly assimilated since 19 september 2006 (over land and sea)
 - Positive impact in the stratosphere in the Tropics and in SH for T and Q
 - 70 other channels are monitored

- Current research works
 - Bias correction (depending on the latitude and the fov)
 - Assimilation of tropospheric channels
 - Assimilation over land : surface emissivity computation
Preparation of the assimilation of cloudy radiances

- AIRS 4D-Var assimilation in the French ARPEGE model
- Dahoui et al, QJRMS (2005): study of various cloud detection scheme for AIRS
 - 4 cloud detection schemes evaluated
 - Evaluation with MODIS observations
 - Linearity of a diagnostic cloud scheme
- 3 methods implemented for cloudy radiance assimilation:
 - CO2slicing
 - CO2slicing adjusted with 1DVar
 - Diagnostic scheme
CO2 slicing methods
Chahine 1974, Menzel et al 1983

- CO2 slicing is used for the retrieval of Ptop and cloud fraction.

\[F_{k,p} = \frac{(R_{clr}^k - R_{obs}^k)}{(R_{clr}^{ref} - R_{obs}^{ref})} - \frac{(R_{clr}^k - R_{cld}^{ref, p})}{(R_{clr}^{ref} - R_{cld}^{ref})} \rightarrow P_{c,k} \]

\[p_c = \frac{\sum p_{c,k} w_k^2}{\sum w_k^2} \]

\[N_{\varepsilon} = \frac{R_{clr}^{ref} - R_{obs}^{ref}}{R_{clr}^{ref} - R_{cld}^{ref}} \]

- Variant: 1DVar used to adjust the Ptop and cloud fraction
Implementation of the CO2slicing in ARPEGE

- Control variables \(T, Q, Ps\)
- RTTOV
- Radiances
- CO2slicing
- Cloud top + cloud fraction
- Screening
 - Radiances + \(T, Q, Ps\)
 - 1DVar
 - Increments of control variable
 - Adjoint of RTTOV
 - Radiance Increments
- Computation of \(\nabla J\)
- Computation of \(J\)
Use of simplified cloud diagnostic scheme from ARPEGE for **large scale stratiform clouds** \((Q_l, qi, cc)\)

Screening
- Cloud detection and characterization

RTTOVCLD
- Cloud variables into control variable
Set up of the experiments

- Ten days period (from 8 to 17 June 2005)
- 102 channels assimilated per field of view over sea
- For cloudy pixels, assimilation only if:
 - $|\text{Lat}| > 40^\circ$
 - Low clouds: $600 \text{ hPa} < P_{\text{top}} < 950 \text{ hPa}$
- 3 exp for cloudy radiances
 - Diagnostic scheme
 - CO2slicing
 - CO2slicing + adjustment with 1DVar
 - Same bias correction and observation errors for cloudy and clear pixels.
- Comparison with
 - **Reference**: clear pixel with CO2 slicing.
 - « ECMWF » experiment: assimilation of the clear channels
Impact on the assimilated observations

For 8/6/2005:

<table>
<thead>
<tr>
<th>Exp</th>
<th>Observations: Clear/cloud/total</th>
<th>Channels: Clear/cloudy/total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>1033/0/1033</td>
<td>103561/0/103561</td>
</tr>
<tr>
<td>Diag</td>
<td>994/515/1509</td>
<td>99713/15622/115335</td>
</tr>
<tr>
<td>CO2</td>
<td>985/549/1534</td>
<td>98812/34094/132906</td>
</tr>
<tr>
<td>CO2+1DVar</td>
<td>966/750/1716</td>
<td>96891/49101/145992</td>
</tr>
<tr>
<td>ECMWF</td>
<td>1696/0/1696</td>
<td>106319/0/106319</td>
</tr>
</tbody>
</table>

- Background departure similar for the other observation types
- Weak increase of the assimilated AMSU-B number in the CO2 and the CO2 +1D experiments.
Background and analysis departures for AIRS observations
Cloudy observations
Impact on the forecasts

- Weak impact in the forecast, mostly in southern hemisphere.
- Non significant impact

Exp-REF RMS error vs RS for Geopotential

Diag CO2slicing CO2+1DVar clear ECMWF

NORD20 TROPIQ SUD20 NORD20 TROPIQ SUD20 NORD20 TROPIQ SUD20
Conclusions

- Feasibility study of the assimilation of cloudy radiances in the ARPEGE model over a ten day period
- 3 methods were tested for the 4D-Var of ARPEGE and compared with the clear sky radiance assimilation (ARPEGE and ECMWF)
- Small number of cloudy assimilated observations
- Small impact on the analysis and on the forecast
Future work

- Extension to the other level of clouds and a longer period
- Observation errors for cloudy pixels, bias correction
- Observation correlation
- Cloud top pressure and cloud cover included in the 4D-Var minimisation