EXPERIMENTAL STUDY ON WATER VAPOR AMOUNT CALCULATION USING 940 nm ABSORPTION SPECTRAL BAND

DONG Chaohua, HUANG Yibin, LIU Zhiquan, LIN Enzu*, ZHANG Gong, XU Jianmin

National Satellite Meteorological Center, Beijing 100081
*Jiangsu Meteorological Bureau, Nanjing 210009

Abstract

Atmospheric water vapor amount is an important parameter in weather and climate studies. As using mid-infrared and microwave spectral bands to detect water vapor amount have some difficulties\cite{1}, the possibility of using visible, near infrared spectral band \cite{2}[3][4][5] is investigated. We did some research in this field using both simulated and real satellite data. The results indicate that it is possible to retrieve water vapor amount from near infrared satellite data and the results are consistent with the radiosonde.

1. DATA AND INFORMATION

1) 6 channels

<table>
<thead>
<tr>
<th>No of channel</th>
<th>CH1</th>
<th>CH2</th>
<th>CH 3</th>
<th>CH 4</th>
<th>CH5</th>
<th>CH6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength(nm)</td>
<td>893-913</td>
<td>913-933</td>
<td>933-953</td>
<td>953-973</td>
<td>853-873</td>
<td>1013-1033</td>
</tr>
<tr>
<td>Absorption</td>
<td>Weak</td>
<td>Weak</td>
<td>Strong</td>
<td>Weak</td>
<td>window</td>
<td>window</td>
</tr>
</tbody>
</table>

2) 6 Standard Atmosphere Profiles: tropical, mid-latitude summer, mid-latitude winter, sub-arctic summer, sub-arctic winter and U. S. standard atmosphere.
3) Surface Reflectance:
 - 0.1-0.5 for land
 - 0.05-0.1 for ocean

4) Aerosol Type: Land and Ocean
 visibility: 5km, 23km, 50km

2. WATER VAPOR CHANNEL TRANSMITTANCE COMPUTATION

<table>
<thead>
<tr>
<th>Observation Height (KM)</th>
<th>CH1</th>
<th>CH2</th>
<th>CH3</th>
<th>CH4</th>
<th>CH1</th>
<th>CH2</th>
<th>CH3</th>
<th>CH4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Summer</td>
<td>Winter</td>
<td>Summer</td>
<td>Winter</td>
<td>Summer</td>
<td>Winter</td>
<td>Summer</td>
<td>Winter</td>
</tr>
<tr>
<td>1.5</td>
<td>0.81791</td>
<td>0.77003</td>
<td>0.39606</td>
<td>0.65607</td>
<td>0.91425</td>
<td>0.90085</td>
<td>0.63159</td>
<td>0.83524</td>
</tr>
<tr>
<td>3.0</td>
<td>0.77083</td>
<td>0.71242</td>
<td>0.32644</td>
<td>0.58996</td>
<td>0.89946</td>
<td>0.86087</td>
<td>0.55339</td>
<td>0.78042</td>
</tr>
<tr>
<td>10.0</td>
<td>0.74224</td>
<td>0.67898</td>
<td>0.29457</td>
<td>0.55572</td>
<td>0.85397</td>
<td>0.83229</td>
<td>0.51166</td>
<td>0.74579</td>
</tr>
<tr>
<td>Space</td>
<td>0.74026</td>
<td>0.67716</td>
<td>0.29374</td>
<td>0.55431</td>
<td>0.85182</td>
<td>0.83022</td>
<td>0.51030</td>
<td>0.74399</td>
</tr>
</tbody>
</table>

From Table 2:
 - Transmittances for all the channels >29%
 - Water vapor absorption mostly occurs in the troposphere
 - Transmittances in winter are slightly higher than that in summer
 - Water vapor channels carries column water vapor information

3. SENSITIVITY STUDIES
 1) Variation of Water Vapor Channel Reflectance with Solar Zenith Angle(Fig.1)
2) Variation of Water Vapor Channel Reflectance with Surface Reflectance (Fig. 2)

- U. S. standard atmosphere profile
- Solar zenith angle: 40°
- Visibility: 23km
3) Water Vapor Channel Reflectance in Different Atmospheric Temperature and Moisture Profiles.

Conditions:
- Solar zenith angle: 40°
- Land surface reflectance: 0.3
- Ocean surface reflectance: 0.05
- Visibility: 23 km
- Water vapor amount for different atmospheric moisture profile
- Tropical atmosphere: 4.120cm
- Mid-latitude summer atmosphere (Midl. summer): 2.930cm
- Mid-latitude winter atmosphere (Midl. winter): 0.853cm
- Sub-arctic summer atmosphere (Subar. summer): 2.102cm
- Sub-arctic winter atmosphere (Subar. winter): 0.419cm
- U. S. standard atmosphere (US standard): 1.424cm

![Fig.3(a) Land](Image)

![Fig.3(b) Ocean](Image)
From Fig 3: The higher total water vapor content, the smaller channel reflectance. The lowest channel reflectance is in tropical atmosphere, the highest channel reflectance is in sub-arctic winter atmosphere.

4) Reflectance for Two Channels in Different Water Vapor Amount and Same Atmospheric Temperature Profile

Conditions:
- Solar zenith angle :40°
- Land surface reflectance :0.3
- Visibility :23 km
- U. S. Standard atmosphere profile
- Water vapor amount : 0.7cm, 1.4cm, 2.5cm, 2.9cm and 4.1cm
- Channels : 903nm (weaker absorption) 943nm (stronger absorption)

Fig. 4 The Variation of Reflectance with water vapor amount

Taking 903nm(CH1) as a example, we know that the variation of CH1
reflectance with atmospheric profiles is from 0.18 to 0.25 shown in Fig. 3(a), but the variation of CH1 reflectance with water vapor is almost 0.18 to 0.25 in Fig. 4. It shows that water vapor effect on the reflectance of 903nm (CH1) is larger than atmospheric temperature. CH3 (943nm) reflectance are more sensitive than CH1 (903nm) in the dry area.

5) Sensitivity of Water Vapor Channel Reflectance to Aerosol

Table 3 Calculating Channel Reflectance and Radiance (Solar zenith angle 40°)

<table>
<thead>
<tr>
<th>Visibility</th>
<th>Mid-latITUDE</th>
<th>Summer</th>
<th>Summer</th>
<th>Winter</th>
<th>Winter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CH1</td>
<td>CH2</td>
<td>CH3</td>
<td>CH4</td>
</tr>
<tr>
<td>5km</td>
<td>ρ*</td>
<td>0.0721</td>
<td>0.0621</td>
<td>0.0216</td>
<td>0.0468</td>
</tr>
<tr>
<td>23km</td>
<td>ρ*</td>
<td>0.0703</td>
<td>0.0608</td>
<td>0.0213</td>
<td>0.0463</td>
</tr>
<tr>
<td>50km</td>
<td>ρ*</td>
<td>0.0703</td>
<td>0.0608</td>
<td>0.0213</td>
<td>0.0463</td>
</tr>
</tbody>
</table>

From Table 3 we get:

- Aerosol effect on the reflectance is very small when visibility is greater than 20km
- Changes of the reflectance for the most channels are significant when the visibility decreases from 23km to 5km
4. RETRIEVAL OF TOTAL WATER VAPOR CONTENT

1) Algorithm

The radiance \(L \) observed by near infrared channel of satellite can be written as:

\[
L = L_s \rho_e \tau + L_p
\]

(1)

Where \(L_s \) = solar radiation above the atmosphere, \(L_p \) = the path scattered radiation, \(\rho_e \) = Surface reflectance, \(\tau \) = atmospheric transmittance. The first item in the right-hand of Eq. (1) is the direct solar radiation reflected by surface and atmosphere. \(L_p \) and \(\tau \) include water vapor information. Question is how to get total water vapor content from the satellite measurement \(L \)?

When visibility is greater than 20km, equation (1) can be written as:

\[
L = K L_s \rho_e \tau
\]

(2)

The two sides of eq. (2) is divided by \(L_s \), then

\[
\rho^* = K \rho_e \tau
\]

(3)

For window channel:

\[
\rho^*_0 = K_0 \rho_{e0} \tau_{a0}
\]

(4)

For water vapor channel:

\[
\rho^*_w = K_w \rho_{ew} \tau_{aw} \tau_w
\]

(5)

Where \(\rho^* \) is channel reflectance, \(\tau_{aw} \) and \(\tau_w \) are aerosol transmittance and water vapor transmittance of the channel respectively. Eq.(5) is divided by eq.(4) and based on molecular spectroscopy theory \(^[3]\)

\[
\tau_w = e^{-\alpha \sqrt{m}}
\]

(6)

\[
\ln B = \beta - \alpha \sqrt{m}
\]

(7)

Where \(m \) is water vapor amount, coefficient \(\beta = \ln \frac{K_w \rho_{ew} \tau_{aw}}{K_0 \rho_{e0} \tau_{a0}} \) , \(B = \frac{\rho^*_w}{\rho^*_0} \) can be known from satellite measurements. If coefficients \(\alpha \) and \(\beta \) were known, \(m \) would be retrieved.

Coefficients \(\alpha \) and \(\beta \) can be calculated by two ways: 1. According to eq. (7) using conventional radiosonde data and simulated ‘B’ by radiative transfer model to make a regression analyses; 2. According to eq. (7) using conventional radiosonde data and ‘B’ obtained from satellite measurements to make a regression analyses. \(\alpha \) and \(\beta \)
depend on regions and seasons.

2) Retrievals for Two Cases

Case 1: using the method ‘1’ to get α and β, then to retrieve ‘m’

Data: atmospheric profiles and surface reflectance are same as indicated in section 1.

solar zenith angle $0^\circ \sim 60^\circ$, interval 10°

aerosol type: land and ocean; visibility 23km

Total samples are 294, 290 of them are used for computing coefficients α and β, the others are used for retrieval. The results are shown in Table 4.

<table>
<thead>
<tr>
<th>Case Data from channel 2</th>
<th>Retrieved m'</th>
<th>Average Value of m'</th>
<th>Ground Truth m</th>
<th>Relative Error</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Midlatitude Summer</td>
<td>Midlatitude Winter</td>
<td>2 (FY-1C)</td>
<td></td>
</tr>
<tr>
<td>Land</td>
<td>6.350</td>
<td>1.956</td>
<td>6.313</td>
<td>-0.4%</td>
</tr>
<tr>
<td>Ocean</td>
<td>6.324</td>
<td>1.929</td>
<td>6.313</td>
<td>+1.2%</td>
</tr>
</tbody>
</table>

(840nm-880nm), channel 10 (900nm-965nm) in June-July 2000, and co-located radiosonde data in the same time, are used to get α and β. Then these coefficients are used to retrieve the water vapor amount with FY-1C channel 2 and channel 10 data on May 13 of 2001. The results are shown in Fig. 5.
The results from Fig.5 (a) and (b) are comparable.

5. CONCLUSION

In this paper, the experimental studies show that the near infrared spectral channels can provide atmospheric total column water vapor information, the retrieval results from both simulated data and FY-1C satellite observations are consistent with the radiosonde
REFERENCES