Optimal Spectral Sampling (OSS) Method: Current Research and New Prospects

Jean-Luc Moncet, Gennadi Uymin and Karen Cadi-Pereira

ITSC-14
Beijing May 25-31, 2005
Overview of the OSS approach

- OSS method (Moncet et al. 2003, 2001) models the channel radiance as

\[
\bar{R} = \int_{\Delta \nu} \phi(\nu) R(\nu) d\nu \approx \sum_{i=1}^{N} w_i R(\nu_i) ; \quad \nu_i \in \Delta \nu
\]

- Wavenumber \(\nu_i \) (nodes) and weights \(w_i \) are determined by fitting “exact” calculations (from line-by-line model) for globally representative set of atmospheres (training set)

- Monochromatic RT (using look-up tables of absorption coefficients for relevant species stored at the selected nodes)
 - Maximum brightness temperature error with current LUT < 0.05K in infrared and <~0.01K in microwave

OSS vs. LBLRTM - AIRS clear-sky, ARM TWP site (08/12/08)
OSS attributes

- Fast/accurate
 - Possibility of trade of between speed/accuracy and tailoring for specific applications
 - Possibility of fitting multiple channels/instruments (generalized training)
 - Speed only driven by total spectral coverage (not number of instruments)
- Flexible handling of variable molecular species
 - Easy selection of variable absorbers at runtime
 - Low memory/computational cost of adding minor absorbers
- Unsupervised training
 - No empirical adjustment: minimizes validation effort!
- Applicable to both high-resolution and wide band (models slow spectral functions within band) sensors
- Applicable to scattering atmospheres
Ongoing OSS efforts

JCSDA/CRTM:
- Joint NOAA/AER OPTRAN-OSS intercomparison in clear and cloudy atmospheres (SSMIS, AMSU, GOES sounder/imager, HIRS and AIRS)
 - Accuracy and timing
- OSS currently being implemented in CRTM
 - Beta version of CRTM with OSS engine delivered

MODTRAN (under DoD funding):
- Look at best approach for interfacing OSS with MODTRAN for _generic_ high/low resolution radiative transfer modeling
- Wide array of users and applications
 - Same method should cover it all
Current priorities

- Cloudy sky training and validation (thermal and solar)
- Molecular optical depth database compression
 - Exploring new approaches for speeding up (and reducing memory requirements) the method in clear and cloudy skies
 - Goal: relax memory requirements and further increase model speed
 - “Local” compression (scale of the order of 100 cm\(^{-1}\)):
 - Multiple channel generalized training/clustering techniques
 - Large scale compression (MODTRAN application)
- Treatment of “slowly” varying functions (Planck, surface, clouds/aerosols)
 - Must consider both high-spectral resolution over wide spectral bands and single broadband channels
OSS cloudy validation

- Two aspects are being considered and tested separately:
 - Treatment of clouds on a narrow spectral intervals (cloud properties do not change across interval)
 - Can be done over wide range of conditions using line-by-line models over restricted spectral domains
 - Handling of spectral variations in cloud optical properties across broad intervals (single broadband “channel” or multiple high spectral resolution channels – see “generalized training”)
 - Use purely absorptive clouds first
 - With scattering: use high spectral resolution/high accuracy OSS model as reference
OSS cloudy validation (narrow spectral interval)

- Scatterers effect is to increase photon path lengths in the layers within and below the clouds (reflective surface)
- For narrow channels (*no spectral variation in cloud optical properties across channel*) clear sky (transmittance?) RT using representative distribution of path lengths may be used
- Present results were obtained without any modification to the present clear-sky training (i.e. clouds not accounted for in generating model parameters)
 - In thermal IR (and microwave) current clear-sky radiance training appears so far to work well
Example of OSS cloudy validation (no scattering)

- Instrument: AIRS
- Mean UMBC profile
- 2 cloud layers:
 - liquid (P=670 mb)
 - spherical ice (P=220 mb)

Performance quite insensitive to dependence on scan angle and cloud absorption
OSS/CHARTS Comparison

- CHARTS (Moncet and Clough, 1997):
 - Fast adding-doubling scheme for use with LBLRTM
 - Uses tables of layer reflection/transmittance as a function of total absorption computed at run time
 - Plans for routine analysis of Rotating Shadowband Spectroradiometer (RSS) spectra at the AMR/SGP site
OSS/CHARTS Comparison (2)

- **OSSSCAT:**
 - Single wavelength version of CHARTS (no tables)

- **Cloudy validation:**
 - Molecular absorption from 740-900 cm\(^{-1}\) domain
 - Full range of extinction optical depth, asymmetry and single scatter albedo explored
 - No spectral variation of scatterer’s optical properties
 - Thermal and solar regimes considered

- 1 cm\(^{-1}\) boxcars, *thermal only* (high cloud: 300-200 mb)
Approaching the current CHARTS LUT accuracy for large OD’s when SSA ~1

(low cloud: 925-825 mb)
OSS/CHARTS Comparison (4)

(high cloud: 300-200 mb)
Generalized training

- OSS selection simultaneously operates on N channels, instead of one channel at a time
- Two selection methods considered:
 - **Method A**: Extension of current method to multiple channels, i.e. nodes are successively added until rms difference between exact and approximate calculation for all channels in domain considered falls below prescribed threshold (reference)
 - **Method B**: Clustering: start from set of pre-selected nodes encompassing domain of interest and coalesce pairs of nodes with similar information content
 - Clustering (not optimized yet) is fast and applies to broad spectral domains (large number of channels) - Method A is limited to a few hundred cm$^{-1}$
Generalized training

- Large computational gains in clear sky (i.e. when cloud-clearing is used)
 - Gain is mainly the result of the fact that eliminated nodes are reconstructed as linear combinations of the retained nodes
 - Gain increases as size of spectral domain increases or spectral resolution increases

- In these examples, gain can be further increased by ~30-40%
Cloudy RT considerations

- **Channel based RT**
 - Required number of nodes for any given channel actually increases compared to single channel training (i.e. current approach is optimal)
 - In this example (gain ~ 15 in clear-sky), scattering calculations actually is ~3-4 times more time consuming than with current single channel approach
Generalized cloudy training

- Must include slowly varying cloud/aerosol optical properties in training
 - Over wide bands: training can be done by using a database of cloud/aerosol optical properties
 - More general training obtained by breaking spectrum in intervals of the order of 10 cm\(^{-1}\) in width (impact of variations in cloud/aerosol properties on radiances is quasi-linear) and by performing independent training for each interval (lower computational gain but increased robustness)

- Direct cloudy radiance training not recommended!
 - Clouds tend to mask molecular structure which makes training easier
 - If “recipe” for mixture of clear and cloudy atmospheres in direct training not right: clear-sky performance degrades
Generalized cloudy training

- Alternate two-step training preserves clear-sky solution
 - First step: normal clear-sky (transmittance/radiance) training to model molecular absorption
 - Second step: duplicate/spectrally redistribute nodes and recompute weights to incorporate slowly varying functions in the model

$$R^\text{cld}_i(v_k) = a_{ik} R^\text{cld}_i(v_1) + (1 - a_{ik}) R^\text{cld}_i(v_2)$$

$$\bar{R} = \sum_i w_i \sum_k (a_{ik} R_i(v_1) + (1 - a_{ik}) R_i(v_2)) \frac{\Delta v_{ik}}{\Delta v_i} = \sum_i w_i' R_i(v_1) + (w_i - w_i') R_i(v_2)$$

\(i=\text{molecular database index}\)
Training method performance comparison (AIRS Channel 1-1262)

<table>
<thead>
<tr>
<th>Channel number</th>
<th>Wavenumber range (cm⁻¹)</th>
<th>Number of selected nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Current selection method</td>
</tr>
<tr>
<td>1</td>
<td>649-669</td>
<td>217</td>
</tr>
<tr>
<td>2</td>
<td>669-889</td>
<td>239</td>
</tr>
<tr>
<td>3</td>
<td>689-709</td>
<td>287</td>
</tr>
<tr>
<td>4</td>
<td>709-729</td>
<td>345</td>
</tr>
<tr>
<td>5</td>
<td>729-749</td>
<td>235</td>
</tr>
<tr>
<td>6</td>
<td>749-769</td>
<td>157</td>
</tr>
<tr>
<td>7</td>
<td>769-789</td>
<td>75</td>
</tr>
<tr>
<td>8</td>
<td>789-809</td>
<td>85</td>
</tr>
<tr>
<td>9</td>
<td>809-829</td>
<td>50</td>
</tr>
<tr>
<td>10</td>
<td>829-849</td>
<td>27</td>
</tr>
<tr>
<td>11</td>
<td>849-869</td>
<td>41</td>
</tr>
<tr>
<td>12</td>
<td>869-889</td>
<td>36</td>
</tr>
<tr>
<td>13</td>
<td>889-909</td>
<td>22</td>
</tr>
<tr>
<td>14</td>
<td>909-929</td>
<td>37</td>
</tr>
<tr>
<td>15</td>
<td>929-949</td>
<td>57</td>
</tr>
<tr>
<td>16</td>
<td>949-969</td>
<td>53</td>
</tr>
<tr>
<td>17</td>
<td>969-989</td>
<td>75</td>
</tr>
<tr>
<td>18</td>
<td>989-1009</td>
<td>122</td>
</tr>
<tr>
<td>19</td>
<td>1009-1029</td>
<td>214</td>
</tr>
<tr>
<td>20</td>
<td>1029-1049</td>
<td>217</td>
</tr>
<tr>
<td>21</td>
<td>1049-1069</td>
<td>165</td>
</tr>
<tr>
<td>22</td>
<td>1069-1089</td>
<td>92</td>
</tr>
<tr>
<td>23</td>
<td>1089-1109</td>
<td>83</td>
</tr>
<tr>
<td>24</td>
<td>1109-1129</td>
<td>85</td>
</tr>
<tr>
<td>25</td>
<td>1129-1149</td>
<td>52</td>
</tr>
<tr>
<td>Total number of nodes</td>
<td></td>
<td>2498</td>
</tr>
<tr>
<td>Avg. number of nodes/channel</td>
<td></td>
<td>1.98</td>
</tr>
</tbody>
</table>

- **Training conditions:**
 - ECMWF set
 - 7 angles (minimize \(\text{rms} \) for each angle)
 - Accuracy threshold = 0.05K
 - Domain size (Method A) = \(~20 \text{ cm}^{-1}\)
 - Random cloud spectra with smoothness constraint (1st and second spectral derivatives) derived from realistic optical properties

- **AIRS results (Method A)**
 - Clear-sky gain: \(~3.4\)
 - Cloudy gain: \(~2.4\)
Generalized training validation
(no scattering)

- 48 UMBC profiles
- 3 cloud layers: 300 mb, 500 mb, 700 mb
- Independent set of random cloud spectra

<table>
<thead>
<tr>
<th>Cloud code</th>
<th>Optical depth range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>=0</td>
</tr>
<tr>
<td>1</td>
<td>>0 and < 0.5</td>
</tr>
<tr>
<td>2</td>
<td>>0.5 and < 1</td>
</tr>
<tr>
<td>3</td>
<td>>1 and < 2</td>
</tr>
<tr>
<td>4</td>
<td>>2</td>
</tr>
</tbody>
</table>

Clear-sky solution left intact

Model accuracy tends to improve as cloud optical depth increases (which is a good sign!)
Summary

- **OSS cloudy validation**
 - Clear-sky transmittance training seem to be adequate for scattering atmospheres (thermal sources only)
 - Validation in solar regime just started - may need to use wider range of layer optical paths

- **“Generalized training” offers potential for large memory/time savings over single channel approach in the modeling of clear (or cloud-cleared) radiances**
 - Variations in cloud/aerosol optical properties limits gain achievable with multi-channel training
 - Estimated worst case for AIRS: gain 2-3
 - Higher gain when model is trained for limited number of particle types
 - Same training algorithm can handle multi-channel and single channel training
Summary (2)

- Robust approach for handling of slowly varying functions in the training
 - New approach for dealing with slow spectral functions (Planck, cloud/aerosols) preserves clear-sky solution and handles seamlessly clear/cloudy transition (optically thin limit)
 - Applies to surface emissivity/reflectivity as well
 - Deals with any spectral function – optimizes solution according to characteristics of input data
 - Can the method be generalized to handle band-to-band correlation?