Investigation of angular variations of radar sea clutter

Guerraou Zaynab1,2 Angelliaume Sébastien1 Guérin Charles-Antoine2

1: ONERA, Département Electromagnétisme et Radar
2: Université de Toulon, Mediterranean Institute of Oceanography (MIO)
Improving our knowledge of the EM scattered signal from the sea surface

- Target detection: Developing robust detection methods under difficult sea conditions (Detection of small targets, rough sea state...)
- Sea clutter: Modelling the EM sea surface response
- Detection/characterization/quantification of marine pollutants. (POLLUPROOOF project)
- Inversion of ocean surface parameters (wind/wave heights/ocean currents)

Collaborative work:

- ONERA – Research labs (MIO, IETR, …)
- DEMR (multi-units/multi-sites): Modeling/radar experimentation/system expertise
CONTEXT OF THE STUDY

Various challenges:

• Modeling of the HH and HV returns
• The variability of the NRCS
• Breaking waves, sea spikes
• Azimuthal variations and directional asymmetries
• The directional wave number spectrum of the short waves
• Grazing angle configuration…

The purpose:

Recent progresses toward the depiction and simulation of some of these phenomena.
INGARA SYSTEM

Fully-polarimetric X band radar system maintained & operated within the « Defence Science & Technology Organisation »

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>10.1 GHz</td>
</tr>
<tr>
<td>Grazing angles</td>
<td>15° à 45°</td>
</tr>
<tr>
<td>Range resolution</td>
<td>0.75 m</td>
</tr>
<tr>
<td>Cross-range resolution</td>
<td>62 m</td>
</tr>
</tbody>
</table>

Circular spotlight mode collection for the INGARA data (reproduced from \[1\])
Fully-polarimetric X band radar system maintained & operated within the «Defence Science & Technology Organisation»

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>10.1 GHz</td>
</tr>
<tr>
<td>Grazing angles</td>
<td>15° à 45°</td>
</tr>
<tr>
<td>Range resolution</td>
<td>0.75 m</td>
</tr>
<tr>
<td>Cross-range resolution</td>
<td>62 m</td>
</tr>
</tbody>
</table>

INGARA radar and trial parameters (reproduced from [1])

<table>
<thead>
<tr>
<th>Trial</th>
<th>Flight</th>
<th>Date</th>
<th>Wind Speed (m/s)</th>
<th>Wind Direction (deg)</th>
<th>Height (m)</th>
<th>Wave Direction (deg)</th>
<th>Wave Period (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCT04</td>
<td>F33</td>
<td>9/8/04</td>
<td>10.2</td>
<td>248</td>
<td>4.9</td>
<td>220</td>
<td>12.3</td>
</tr>
<tr>
<td>SCT04</td>
<td>F34</td>
<td>10/8/04</td>
<td>7.9</td>
<td>248</td>
<td>3.5</td>
<td>205</td>
<td>11.8</td>
</tr>
<tr>
<td>SCT04</td>
<td>F35</td>
<td>11/8/04</td>
<td>10.3</td>
<td>315</td>
<td>2.6</td>
<td>210</td>
<td>10.4</td>
</tr>
<tr>
<td>SCT04</td>
<td>F36</td>
<td>12/8/04</td>
<td>13.6</td>
<td>0</td>
<td>3.2</td>
<td>293</td>
<td>8.8</td>
</tr>
<tr>
<td>SCT04</td>
<td>F37</td>
<td>16/8/04</td>
<td>9.3</td>
<td>68</td>
<td>2.5</td>
<td>169</td>
<td>9.7</td>
</tr>
<tr>
<td>SCT04</td>
<td>F39</td>
<td>20/8/04</td>
<td>9.5</td>
<td>315</td>
<td>3.0</td>
<td>234</td>
<td>11.4</td>
</tr>
<tr>
<td>SCT04</td>
<td>F40</td>
<td>24/8/04</td>
<td>13.2</td>
<td>22</td>
<td>3.8</td>
<td>254</td>
<td>12.2</td>
</tr>
<tr>
<td>SCT04</td>
<td>F42</td>
<td>27/8/04</td>
<td>8.5</td>
<td>0</td>
<td>4.3</td>
<td>243</td>
<td>12.5</td>
</tr>
<tr>
<td>MAST06</td>
<td>F2</td>
<td>17/5/06</td>
<td>8.5</td>
<td>115</td>
<td>0.62</td>
<td>112</td>
<td>3.1</td>
</tr>
<tr>
<td>MAST06</td>
<td>F4</td>
<td>19/5/06</td>
<td>3.6</td>
<td>66</td>
<td>0.25</td>
<td>35</td>
<td>2.6</td>
</tr>
<tr>
<td>MAST06</td>
<td>F8</td>
<td>23/5/06</td>
<td>3.5</td>
<td>83</td>
<td>0.41</td>
<td>46</td>
<td>4.0</td>
</tr>
<tr>
<td>MAST06</td>
<td>F9</td>
<td>24/5/06</td>
<td>10.2</td>
<td>124</td>
<td>1.21</td>
<td>128</td>
<td>4.6</td>
</tr>
</tbody>
</table>

Noise floor and denoising process

Azimuthal variation for HH polarized data for nominal grazing angles of 15° (left panel) and 45° (right panel) for a wind speed of 8.5 m/s

Raw NRCS
Mean noise estimate
Denoised NRCS

Upwind = 0°
Downwind = +/- 180°
Crosswind = +/- 90°
Azimuthal variation of the NRCS: Maximum Likelihood estimation

\[\sigma_{0}^{model}(\phi_n) = \tilde{\sigma}_0(\phi_n) + b(\phi_n) \]

Model: Truncated Fourier series

\[\tilde{\sigma}_0(\phi_n) = a_0 + \sum_{k=1}^{4} a_k \cos(k(\phi_n - \delta_k)) \]

Log-likelihood:

\[\mathcal{L} = -\frac{1}{2} \sum_{n=1}^{N_a} \log(2\pi \sigma_0^2) - \sum_{n=1}^{N_a} \frac{1}{2\sigma_b^2} \left[\sigma_0^{data}(\phi_n) - (\tilde{\sigma}_0(\phi_n) + b) \right]^2 \]

\[\frac{\partial \mathcal{L}}{\partial a_k} = 0, \quad \frac{\partial \mathcal{L}}{\partial \phi_k} = 0 \ldots \quad \Rightarrow \quad a_n, \phi_n \]
Azimuthal variation of the NRCS: HH peculiar behavior at low grazing angles

Progressive shift from two local maxima at upwind/downwind directions to a unique and pronounced maximum in the upwind direction

Physical interpretation?
Azimuthal variation of the NRCS: Directional asymmetries

Example of the azimuthal variation for a 41° grazing angle, run3

Conclusions:

- UDA and UCA in VV and HH are maximum at moderate grazing angle (30° - 45°)
- \(UDA_{HH} > UDA_{VV} \) & \(UCA_{VV} > UCA_{HH} \) (The maximum UDA in HH is in average about 2 dB higher than the VV counterpart.)

- Upwind/Downwind asymmetry: \(UDA = 10 \log_{10} \left(\frac{\sigma_{up}^0}{\sigma_{down}^0} \right) \)
- Upwind/Crosswind asymmetry: \(UCA = 10 \log_{10} \left(\frac{\sigma_{up}^0}{\sigma_{cross}^0} \right) \)
Relations between the different polarizations:

Polarization ratio – Grazing and azimuth behavior

\[
PR = (\sigma_{VV}^0)_{dB} - (\sigma_{HH}^0)_{dB}
\]

Conclusions:

- The PR is a decreasing function of grazing angle
- \(PR_{data} < PR_{Bragg} \)
- PR has a strong azimuthal dependency with a sharp maximum in the downwind direction
Polarization ratio of asymmetric wave
Upwind & downwind

Polarization ratio using Bragg theory for a nominal incidence angle θ

\[
\begin{align*}
B_{VV} &= \frac{\varepsilon - 1}{(q_0 + q'_0)^2} (-q'_0^2 - \varepsilon k_0^2) \\
B_{HH} &= \frac{\varepsilon - 1}{(q_0 + q'_0)^2} K^2
\end{align*}
\]

, With

\[
\begin{align*}
k_0 &= K \sin \theta \\
qu &= K \cos \theta \\
q'_0 &= \sqrt{\varepsilon K^2 - k_0^2}
\end{align*}
\]

\[
PR_{\text{Bragg}}(\theta) = \frac{|B_{VV}|^2}{|B_{HH}|^2} = \frac{|q_0 + q'_0|^4}{|\varepsilon q_0 + q'_0|^4} \left[\sin^2 \theta (1 - \varepsilon) - \varepsilon \right]^2
\]
Polarization ratio using Bragg theory for a nominal incidence angle θ

$$
\begin{align*}
B_{VV} &= \frac{\varepsilon - 1}{(\varepsilon q_0 + q_0')^2} (-q_0'^2 - \varepsilon k_0^2) \\
B_{HH} &= \frac{\varepsilon - 1}{(q_0 + q_0')^2} K^2
\end{align*}
$$

, With

$$
\begin{align*}
k_0 &= K \sin \theta \\
q_0 &= K \cos \theta \\
q_0' &= \sqrt{\varepsilon K^2 - k_0^2}
\end{align*}
$$

At local incidence angles:

$$
PR_{\text{Bragg}}(\theta) = \frac{|B_{VV}|^2}{|B_{HH}|^2} = \frac{|q_0 + q_0'|^4}{|\varepsilon q_0 + q_0'|^4} \left[\sin^2 \theta \left(1 - \varepsilon \right) - \varepsilon \right]^2
$$

Wind direction

- Downwind
- Upwind

$\theta_{\text{loc}}^\text{downwind} = \theta_i - \alpha$

$\theta_{\text{loc}}^\text{upwind} = \theta_i - \beta$
Polarization ratio of asymmetric wave
Upwind & downwind

Polarization ratio using Bragg theory for a nominal incidence angle θ

$$
\begin{align*}
B_{VV} &= \frac{\varepsilon - 1}{(q_0 + q'_0)^2}(-q_0'^2 - \varepsilon k_0^2) \\
B_{HH} &= \frac{\varepsilon - 1}{(q_0 + q'_0)^2}K^2
\end{align*}
$$

With

$$
\begin{align*}
k_0 &= K \sin \theta \\
q_0 &= K \cos \theta \\
q'_0 &= \sqrt{\varepsilon K^2 - k_0^2}
\end{align*}
$$

At local incidence angles:

$$
PR_{loc}(\theta) = \frac{|B_{VV}|^2}{|B_{HH}|^2} = \frac{|q_0 + q'_0|^4}{|\varepsilon q_0 + q'_0|^4} \left[\sin^2 \theta \left(1 - \varepsilon \right) - \varepsilon \right]^2
$$

α and β angles are in good agreement with slopes obtained in wind-wave tank measurements (Cf Caulliez et al$^{(2)}$)

Relations between the different polarizations:

The polarization difference $\sigma^0_{VV} - \sigma^0_{HH}$

- $\sigma_0 = \sigma^p_0 + \sigma^{np}_0$ (linear units)
- $PD = \sigma^0_{VV} - \sigma^0_{HH}$ removes the non-polarized contribution

Azimuthal variation of the polarization difference VV-HH for run days 9 (left) and 12 (right)

Grazing angles
- 25°
- 37°
- 42°

No or weak UDA asymmetry!

Potential Interpretation:

UDA asymmetry is likely to be contained in the non-polarized part and presumably related to the large scales of surface roughness?
Azimuthal variation of the ratio

\[R = \frac{\sigma_{VH}^0}{\sigma_{VV}^0 - \sigma_{HH}^0} \propto m s s y \]

Spectral models

- Omni-directional spectra
 - Elfouhaily [5]
 - Bringer [6]

Spectral models

- Spreading functions
 - Elfouhaily [5]
 - Yurovskaya [7]

Study of the cross-polarized data

Scattering models

- GOSSA [3] for the two-like polarizations
- SSA2 [4] for the cross-polarized data

Azimuthal variation of the Ratio at 40° grazing angle for run days 3 (left) and 9 (right)

Simultaneous variation of the different polarizations

- Systematic correlation between the HH & HV polarizations ($\rho > 0.9$)
- Poorer correlation between the VV and HV channels ($\rho < 0.8$), albeit following the same trend

Scatterplot of HH versus HV (left) and VV versus HV (right) for the mean NRCS taken at 37 degrees grazing angle within ± 2.5 degrees from the upwind direction with linear fit shown in red.
Significant improvement of the simulated HH and VV NRCS brought by the use of the improved spectral models.

HH (left) and VV (right) NRCS from the INGARA MGA data for run day 9. Superimposed is the simulated NRCS according to the GO-SSA model with Elfouhaily directional spectrum and Bringer-Yurovskaya model.
Conclusion

- Peciluar azimuthal distribution at low grazing angles for HH-polarized data
- UDA & UCA asymmetries are not monotone functions of grazing angle and reach their maximum at moderate grazing angles (30°-45°)
- $UDA_{HH} > UDA_{VV}$ & $UCA_{VV} > UCA_{HH}$
- PR max at downwind
- $\frac{\sigma_{VH}^0}{\sigma_{VV}^0-\sigma_{HH}^0}$ maximum at crosswind and no or weak UDA for the $\sigma_{VV}^0 - \sigma_{HH}^0$
- Eventual correlation between HH and HV polarized data
- Improvement of the co-polarized simulated NRCS brought by the use of improved spectral models
THANK YOU FOR YOUR ATTENTION

QUESTIONS?
Azimuthal variation of the NRCS: Maximum Likelihood estimation

Robustness of the MLE to the SNR degradation

The RMSE calculated between the noise-free simulated data and the estimated model is found to be significantly low and quite insensitive to the SNR.

Example of NRCS reconstruction at low SNR of -35 dB
Effect of swell

V\textit{V}(upper dots) and H\textit{H} (lower dots) NRCS for the Hwang spectrum with different swell indices for a 4m/s wind speed on the left panel and 10m/s on the right panel.

A slightly more pronounced effect in the H\textit{H} pol and at smaller wind speeds