3rd International Surface Working Group 15-17 July, 2019 Montreal, Canada

### Evaluation of the land surface radiative transfer model CMEM for snow-covered regions

Yoichi Hirahara<sup>1,2</sup>, Patricia de Rosnay<sup>1</sup>, Gabriele Arduini<sup>1</sup>

<sup>1</sup>European Centre for Medium-Range Weather Forecasts (ECMWF) <sup>2</sup>Japan Meteorological Agency (JMA)

yoichi.hirahara@ecmwf.int



## Outline

- Background for investigation
- Motivation for the study
- Experimental setup
- Results
- Conclusions





### Background for investigation

• CMEM (Community Microwave Emission Modelling platform) has been developed at ECMWF for low frequency (1-20GHz) microwave brightness temperature (TB) observations monitoring and data assimilation. (Apache Licence Version 2.0)

- CMEM is currently used at ECMWF as the SMOS forward operator to simulate L-band TB.
- However as SMOS is used for soil moisture purpose at ECMWF, CMEM has been used on snow free areas only.
  Not monitored





### Motivation for the study

- Toward assimilation of surface-sensitive satellite data over land, uncertainties about the surface are critical.
- Especially, in snow-covered regions, emissivity varies dramatically with snow layer's properties.
- CMEM includes the HUT (Helsinki University of Technology) single layer snow emission model.
- To allow the simulation of vertically structured natural snowpack, we implemented the HUT multi-layer snow emission model (Lemmetyinen et al., 2010) in CMEM, in line with the on-going development of a multi-layer snow scheme for the ECMWF land surface model (HTESSEL).



### **Experimental setup**

- TB are simulated with CMEM(v5.1+ $\alpha$ ) for the in offline mode (over land)
  - Tco399 (octahedral cubic reduced Gaussian grid)
- Simulated TB are compared to
  - GCOM-W AMSR2 observations (6.925, 10.65, 18.7GHz)

#### **OBSERVATION**



AMSR2 TB(V) 6.925GHz 2018-01-01 03UTC - 2018-01-01 09UTC SIMULATION (CMEM)







EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

300

290 280 270

260

250 240

230

220 210 200

190

# CMEM configuration (1)

- Span **CMEM** - 2017-10-01 - 2018-06-30 (every 6h) Input **HTESSEL** Spin up - Atmosphere
  - HRES operational ECMWF analysis
    - 2m temperature
  - Land, Snow
    - HTESSEL (offline) using ERA5 atmospheric forcing (Start date: 2010-06-01)
      - Soil moisture, Soil temperature, Tskin, Land cover, LAI, Soil texture
      - Snow temperature, Snow density, Snow water equivalent, Snow liquid water content
    - HTESSEL Snow scheme
      - SL1: Single layer snow scheme (as operational)
      - ML5: Multi-layer (5 layers) snow scheme (on-going development)



# CMEM configuration (2)

| CMEM option                    | parameterization                                                                                                                                 |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Dielectric mixing model        | Mironov et al., 2004                                                                                                                             |
| Effective temperature model    | Choudhury et al., 1982                                                                                                                           |
| Smooth surface emissivity      | Fresnel (Njoku and Kong, 1977)                                                                                                                   |
| Soil roughness model           | Wegmüller and Mätzter, 1999                                                                                                                      |
| Vegetation optical depth model | Kirdyashev et al., 1979                                                                                                                          |
| Atmospheric emission model     | Pellarin et al., 1999                                                                                                                            |
| Vegetation temperature         | Tsurf                                                                                                                                            |
| Vegetation cover input data    | HTESSEL (Balsamo et al., 2009)                                                                                                                   |
|                                | HUT-S: HUT single-layer model (Pulliainen et al., 1999)                                                                                          |
| Snow emission model            | HUT-M: HUT multi-layer model (Lemmetyinen et al., 2010)<br>(extinction coefficient model: Hallikainen et al., 1987)<br>(grain size option: dmax) |
| NEW!                           |                                                                                                                                                  |

#### EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

**C**ECMWF

(a) HTESSEL:SL1, HUT-S

AMSR2 TB(V) 10.65GHz (2017-10-01 – 2018-06-30)









#### **C**ECMWF



#### 





TB(CMEM) is sensitive to volume fraction of liquid water. (dry snow or wet snow) •





- Confirm the reason of TB difference between single-layer and multi-layer
  - How much the effect of multi-layer snow HTESSEL ?
  - How much the effect of multi-layer HUT ?
- Use single-layer snowpack converted from multi-layer snow HTESSEL
  - with single-layer HUT



#### **C**ECMWF





mm/dd

AMSR2 TB(H) 10.65GHz

<u>Timeseries (2017-10-01 – 2018-06-30)</u> lon = 170.0 lat = 67.0

(c) HTESSEL:ML5->1, HUT-S



Snow density

15

000

800 600

400 200





EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

17

## **Conclusions and perspectives**

- We implemented the HUT multi-layer snow emission model in CMEM.
  - Results
    - HUT is sensitive to volume fraction of liquid water in snowpack.
    - Multi-layer snow HTESSEL and Multi-layer HUT improve simulated TB.
      - Mainly from Multi-layer snow HTESSEL.
      - In dry-snow area, snow density is important for multi-layer HUT at low frequency MW (1-20GHz).

#### Perspective

- The impact of CMEM land surface emissivity for low frequencies microwave monitoring and assimilation over snow covered surfaces will be evaluated.
- Longer term perspectives will address initialization of multi-layer sow conditions from satellite radiances assimilation, taking advantage of opportunities arising from enhanced land atmosphere coupled data assimilation and from the future generation of polar orbiting satellites.

#### • CMEM update

- New version (v6.0) will be available soon. (Sep. 2019 ?)
  - CMEM information -> https://confluence.ecmwf.int/display/LDAS/CMEM