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Mountain snow in Canada
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> Water stored as snow in the mountains represents
e Do a key component of the hydrological cycle of
e many river basins in Canada
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[ Mackenzie
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~ k-« > An accurate estimation of snow resources is
crucial for flood forecasting, water management,
irrigation planning, ...

Key questions in mountain snow hydrology:
e How much is there?
* How fast does it melt?

| ALBERTA FLOODING EMERGENCY |8
Highway closures in effect near Canmore




ool Available gridded snow products
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| Towards a reference snow product

> Capturing the spatial and temporal variability of snow water resources in
mountainous terrain

> Able to provide input data to hydrological models of varying complexity
with different spatial discretisation (distributed, semi-distributed, ...)

> Relying on a physically-based snow model representing the main
processes driving snow accumulation and ablation in mountainous terrain

> Using atmospheric driving data at high temporal and spatial resolution

> Able to assimilate the latest products available in snow remote sensing
(Lidar-derived maps of snow depth, high-resolution maps of snow cover “SgE?
from visible satellite imagery, ...)



5-m 3D map of snow depth derived from airborne Lidar
over the Kananaskis region (Alberta) on 27 April
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Canadian Hydrological Model (CHM)
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> Unstructured triangular mesh | =58 . e : i
depending on topography and g T8 W . T e
vegetation complexity : '

> Includes state-of-the-art energy-
balance snowpack schemes

> Accounts for:
> slope and aspect; terrain shading
> gravitational redistribution
> blowing snow (redistribution + _ e >
sublimation) B LTas Ea | - s Lo
> snow/canopy interactions : :
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Marsh et al. (2019, in review)
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> High-resolution atmospheric data are required to drive CHM

> Use of ECCC high-resolution products:
> High Resolution Deterministic Prediction System (HRPDS): 2.5
km over Canada (+ 1-km over Western Canada)
> Canadian Precipitation Analysis (CaPA) at 2.5 km: combines
HRDPS precip. + radar & gauge measurements

igh-resolution driving data

ﬁR PS West 1-km

( Development of innovative downscaling methods

> Wind field: combination of HRDPS forecast + library of
micro-scale wind fields from a diagnostic model

> Impact for snow hydrology
> Redistribution by blowing and drifting snow
> Spatial variability of turbulent fluxes (in particular
during rain-on-snow events)




a The SnowCast experiment

Developped by N. Wayand > CHM over the Upper Bow River basin (16 000 km?)

> Atmospheric driving data: GEM 2.5 km (High Resolution
Deterministic Prediction System) downscaled to the CHM mesh

> Forecasts of SWE, snow depth and melt runoff up to + 48h

Snowdepth.
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Daily output available at http://www.snowcast.ca —




~ Study area - Kananaskis, Canadian Rockies

* ABE = CHRO

J

Kananaskis area
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1-m snow depth map
27 April 2018



CHM over the Kananaskis region

> Simulation domain: 1014 km? - Water year 2017/2018

Min. Max. .
Sl bl Resolution ' Resolution UAETE
Operational 200 m 2500 m 16200
High Res. 50 m 500 m 97300

> Atmospheric forcing:
> HRDPS short-term NWP forecasts at 2.5-km grid spacing
> Downscaling to the CHM mesh
> Wind downscaling relying on pre-computed wind field

library from a high-resolution wind model

> 2 experiments for each mesh:
> No lateral snow redistribution
> With lateral snow redistribution







_ o R Influence of snow redistribution (High-Res)

CHM output are interpolated on a regular 50-m grid
4.0

CHM with snow
redistribution
captures many
features of snow
accumulation
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_ g o Ranl Influence of elevation (High-Res)
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_ = HanllS Influence of elevation (High-Res)

25 km

43 km

Lidar-derived 50-m map of snow depth
(SD) (non-forested areas)
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_ g = el Influence of elevation (High-Res)
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Influence of mesh resolution
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= = Model performance around ridges

Kananaskis North Kananaskis South Haig

» Simulations with snow redistribution
improves SD representation on the
v |g  windward slopes (SW, W, NW)
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on leeward slopes (SE, E, NE) for
Kananaskis North and South

Wasserstein distance (in m) around ridges as a function of slope orientation



_ g o Ranl Snow persistence index

Snow persistence (SP) index is
derived from snow cover maps at
20-m resolution from Sentinel-2

SP is calculated from snow-
covered areas during spring and

c E summer.
~ <
(QV o e 4 1.
\n 3 SP variability results from
§ variability in snow accumulation
» and snowmelt energy
10.3 . .
1.0 > Potential to evaluate high-
i 10.2 resolution snowpack
0.5 simulation at large scale
10.1
Method of Wayand et al. (2018)
0.0

- —0.0  Sentinel images provided by S. Gascoin
Snow persistence index (CESBIO, France)
derived from Sentinel-2

Lidar measurement
27 April 2018
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- CHM over Western Canada |

> CHM mesh with a 200-m triangle size near ridges
> Snow accumulation during a 4-day storm in Jan. 2018
> Atmospheric forcing: HRDPS 2.5 km

Simulation without
snow redistribution

30
|




- Conclusion and perspective

> Development of a multi-scale snowpack modelling system in Western Canada

> CHM captures some of the spatial variability of mountain snowpack over 1000s of km?

> Snow redistribution must be included in distributed snow modelling at resolution below
200 m, 1n particular to avoid unrealistic accumulation at high elevation.

> Perspectives:
> Improvement of CHM for alpine environment
> Improvement of atmospheric forcing
> Large-scale simulations across the mountains of BC and AB.



Thanks you for your attention!




_ g Wind field downscaling

Objective: efficient downscaling method to adjust GEM wind

4 1. Diagnostic wind model N
2 versions: - mass conservation (used here) 4 2. Meso to micro downscaling )
- CFD model = At each triangle with Ugem and Bcewm:
b
- Wind field library Select Uwn, Vi, fon~ ——, Local direction
- 50-m resolution from corresponding map Bpown, from Uwn & Vi

e e

- 24 directions (15°)

-10ms'at40m Local wind speed

Uigown = fWN Ugem

- Stored on CHM mesh:
- Wind components: U,V
- Speed-up factor:

¥
vy
< UVwn >25km ]

j

Based on Bracons et al. (2017), Marsh et al. (In prep.)

fwn =

o

o,
[ o,




e, = Wind field downscaling: example

GEM wind Downscaled wind

-
L

> Adjust local wind speed and direction:
> Crest speed-up
> Valley channelling

> Limitation:
> Leeside recirculation is not captured
(limitation of the mass-conserving approach)
40-m wind speed on 10 Sept. 2018 18 UTC > Thermal flows are not captured
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= Importance of precipitation forcing
APA-CHM
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11542 115.55W T150W 11924 W 115161 115.12°W 42W 115,80 1155 11524 W 116 18W 152w 20 Time series of cumulated precipitation at 2
Total snowfall over water year 2017/2018 CRHO stations (not included in CaPA)
> Lower seasonal snowfall amount with CaPA-CHM > Underestimation of total precipitation
compared to GEM-CHM with CaPA
Only 1 low-elevation station entering CaPA in this > Improved estimation with GEM

region of 1000 km?



"~ Importance of precipitation forcing

j 25 km
1 S 4.0 Haig area Kananaskis area
= Obs. = GEM-CHM| [=== Obs. = GEM-CHM Haig area:
[ CAPACHM @ Mean ~ 1 CAPACHM ' Mean - GEM-CHM 1n better

3.5
agreement than CAPA-CHM

1 - But: persistent overestimation
at low and high altitude

3000 |
3.0

2800 | Kananaskis area:

25 - GEM-CHM: general
Z_E’ 2600 overestimation of SD
£ 20 % R - CAPA-CHM: improved
Q = £ estimation of SD but persistent
(,g, S 2000| overestimation at low and high
15 8 altitude
o
1o 2200 Bias in SD are not only
associated with errors
s 2000l In precipitation input
0.0 1800l None of the simulations

captures the spatial
variability

Lidar-derived 50-m map of snow depth
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Snow depth variability per 200-m elevation band
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