

Satellite-based drought response characterization and vegetationatmosphere coupling for model evaluation at the global scale

Jakob Zscheischler, Nadine Nicolai-Shaw, Lukas Gudmundsson, Martin Hirschi, Rene Orth, Sebastian Sippel, and Sonia Seneviratne

Institute for Atmospheric and Climate Science

Outline

- 1) Satellite-based drought response characterization
- 2) Vegetation-atmosphere coupling and model evaluation

Data

Variable	Dataset
Soil moisture	ESA CCI v03.2
Evapotranspiration	GLEAM
Maximum temperature, precipitation	ERA Interim
NDVI	NDVI3g
LAI, FAPAR	MODIS
Landcover	ESA CCI
Soil moisture	ERA Interim/Land

Available Data

Methodology

Define the peak of the growing season

Month with highest vegetation activity

Methodology

Define the peak of the growing season

Periods of extremely dry soil moisture conditions

Drought composite anomaly: here for ET

Nicolai-Shaw et al., 2017, RSE

Drought responses

Nicolai-Shaw et al., 2017, RSE

Drought responses

Nicolai-Shaw et al., 2017, RSE

Remotely-sensed SM droughts in comparison with modeled SM and SPI

Conclusions I

- Remotely sensed soil moisture drought behavior corresponds well to modeled shallow layer soil moisture
- Grasslands respond much more strongly to remotely sensed soil moisture drought than forests
- The ESA CCI SM dataset is well suited for drought monitoring in crop regions/grasslands
- It may complement/replace commonly used soil moisture proxies to study land-atmosphere dynamics at the global scale

Outline

1) Satellite-based drought response characterization

2) Vegetation-atmosphere coupling and model evaluation

The different climate regimes

Vegetation-atmosphere coupling

Data

Variable	Dataset
FAPAR	FAPAR3g
Temperature	ERA Interim
Evapotranspiration	eartH2Observe
(Soil moisture	Orth & Seneviratne, 2015, ERL)
(Net radiation	NASA GEWEX SRB/CERES)

Climate regimes are related to different regions in the T-FPAR space

Climate regimes are related to different regions in the T-FPAR space

Moscow

Relating the VAC index to climate regimes

Relating the VAC index to climate regimes

Temporal revolution: Russian heatwave 2010

Soil moisture reconstruction

Zscheischler et al., 2015, GRL; SM reconstruction taken from Orth & Seneviratne, 2015, ERL

Temporal evolution: Amazon drought 2010

Temporal evolution: East Africa, response to El Niño 2011

Many models overestimate occurrence of soil moisture limited regime

Occurrence of SM limited regime is correlated with temperature extremes

Use VAC index to constrain model ensembles

Conclusions II

- The VAC index based on FAPAR/ET and temperature can diagnose climate regimes at high temporal and spatial resolution
- Many climate models overestimate the occurrence of water limited regimes
- This overestimation leads to positive biases in daily temperature extremes

Thank you!