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Introduction

= Microwave remote sensing of show :
— Not affected by weather nor day/night periods
— Some frequency bands especially relevant for snow study
— Microwave signal varies with snow properties
= Frequently used in the past :
— Mapping of snow extent, seasonal snow
- Differentiation between dry and wet snow

Examples of contributions
from the snowpack and the
ground to the backscatter
signal

snowpack

Ground @
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Introduction

= |-Band (1-2 GHz)

= C-Band (4-8 GHz) o TI_1e penetrat_ion depth decrease
= X-Band (8-12 GHz) with increasing frequency and

the snow moisture
= Ku-Band (12-18 GHz)

= Ka-Band (26,5-40 GHz) * With C-band : small effect of dry

show, very sensitive to wet snow

Rott and Matzler, 1987 ;Fily et al., 1995 ;Shi and Dozier, 1997 ;Bagdadi et al., 1997 ;Koskinen et al., 1999 ;Shi and Dozier,
2000 ;Bagdadi et al., 2000; Magagi and Bernier, 2003 ;Sun et al., 2004; Longépé et al., 2008 ; Pivot, 2012 ; Dedieu et al. 2015
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Introduction

Nommalizad backscatter in dB

Nomnalized backscatter in dB
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Figure 2. Normalized backscattering coefficients, for A)
L-band, B) C-band, and C) X-band: (v} VV polarization; (h)
HH polarization; (*) VH polarization.
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Shi and Dozier, 1997
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Introduction

Shi and Dozier, 1995

= \
2 | \ S/
e 7 \ e
E & ;
g
73]
o
o
=+
e
T T
2 4 6 a 10 12
Snow Wetnass in %
Cui et al., 2016
-10
% -14 X band HH_Observed
? 18 | S\ Observed
s . - A
E s HH_ Mo de |
g 22 f -/ Model
2 e
= —
8 26 | “""'--._‘__m VH_Observed
(a) VH_Model
-30

30 35 40 45 50 55 60 65 70
Incident Angle

Relation between simulated C-

—» Dband backscatter signal at

polarization VV and snow wetness
and snowf/air interface roughness

Influence of the incidence angle on the
backscattering coefficient : X and Ku-

Backscattering(dB)

=10 |

=13 |

=16 |

=19 |

22 }

-25

> bands

Ku band
M ——WV_Observed
—\V_Model
T —UH_C'J served
|- o
(b) VH_Model

25 30 35 4 45 50 55 60 65 70
Incident Angle

O]
METEO
Page 5 1rst International Surface Working Group, ISWG, Monterey, July 19-20th 2017 i @

CNRM UMR 3589



Introduction

= Currently, Crocus does not assimilate any observations all along the
Snow season

|—> Accumulation of errors inside the snowpack model

Example for the instrumental site of Météo-France at col de Porte
(in situ measurements)
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Introduction

PhD objective : Assimilation of Sentinel-1 SAR data over the french mountainous areas into the
showpack model Crocus

e Sentinel-1's C-band :
* Relevant to study the wet snow evolution
« Snow liquid water content : significant for the avalanche forecast
« Continuity of Sentinel-1 observations = opportunity to consider operational assimilation

« To understand and to simulate the impact of snow properties on the microwave signal
« Evaluation of the association of various micro-wave bands to caracterize snow properties : L-

band(Alos-2), C-band(Sentinel-1), X-band(TerraSAR-X)
« To develop an relevant data assimilation method to assimilate Sentinel-1 data

..
T, snowdepth, grain size,
density, SWE, ...
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Models and data

Crocus

= Numerical snowpack
model

= One dimension and
vertically layered
snowpack simulations

= Coupled to ISBA
ground model

= Provide a description
of the snowpack
properties

= Choice of the number
of layers : 50 layers
available
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Models and data

= MEMLS : Microwave Emission Model of Layered Showpacks
(Wiesmann, A and Matzler, C, 1999; Proksch et al., 2015)

N Radiative transfer model for snowpacks based on a 6 flux theory - takes into
account the various absorptions, reflexions and scattering between each layer

of the snowpack

u Inputs : - simulations of snowpack state variables from Crocus (temperature,
density, correlation length, layers thickness, liquid water content)

— soil properties

— Instrument characteristics (incidence angle, frequency of
acquisition)

=  Outputs : backscatter coefficients displayed for the wanted polarization (active
mode)
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Models and data

Sentinel-1's observations
— ESA Mission
-~ Two satellites orbiting 180° apart

— Reuvisit time of 6 days since October 2016
with Sentinel 1-B

— Polar orbit, at an altitude of ~700 km

— Radar instrument onboard

Synthetic Aperture Radar (SAR)

C-band, central frequency : 5,405 GHz

Single polarizations (VV ou HH) or double (VV+VH, HH+HV)
Swath : 250 km, resolution : 20m

Various operational modes : selection of the Interferometric Wide
Swath

+ Type of product : GRD (Ground Range Detection)

* * * *

METEO
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Models and data

= Pre processing for Sentinel-1 SAR data

- Level-1 SAR products, available for free

— Need to realise the pre processing of S1 SAR data before working with it

Example of pre processing realised on a raw image around Grenoble in the northern
french Alps

VI

> Radiometric calibration :
from intensity to
backscatter coefficient

> Speckle filtering : reduce
speckle noise

> Terrain correction with
IGN’s 2008 25 m
resolution DEM

Page 11 1rst International T‘Surface Working Group, ISWG, Monterey, 200 gl l
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Results

" Two show seasons ; 2014-2015 and 2015-2016

m Crocus configuration : 20 layers

m 2D simulations over the yellow area below in the northern French Alps — many mountainous areas,
spatial variability
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Results

lllustration of the difference between observations and simulations in terms of snow and soil properties for a
selected date in winter : 25/02/2015
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Results

lllustration of the difference between observations and simulations in terms of snow and soil properties for a
selected date durina the meltina period : 26/04/2015
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Results

Statistics over two seasons == > bias, RMSE and correlation maps for VV and VH polarization
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Results

Statistics over two seasons == > bias, RMSE and correlation maps for VV and VH polarization
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Conclusions and futur improvements

Promising results of simulations of the backscatter coefficients compared to Sentinel-1 SAR
observations over a 50 km? area in the northern french Alps ==> the model chain Crocus-
MEMLS is relevant to simulate C-band Sentinel-1 backscatters (soil and snow)

==> More results in Veyssiere et al., Evaluation of sub-kilometric numerical simulations of C-
band radar backscatter over the French Alps against Sentinel-1 observations, 2017, in prep

Study the seasonal variability of the backscatter coefficients (obs, sim) near in-situ station
measurements (4 stations inside the area of interest)

Study the complementarity of other bands to characterise snow properties: X, L bands
Improve preprocessing of Sentinel-1 data: geometric corrections (TandemX DEM - DLR)
Use of high resolution products (land cover) to evaluate the model chain over forests areas

Development of a data assimilation method to assimilate Sentinel-1 SAR backscatters in the
snowpack model Crocus (particle filter (Charrois et al. 2016), Ensemble Kalman Filter...)
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