

Toward a better use of Infrared radiances over land in NWP models at global and meso scales

Nadia FOURRIE, Vincent GUIDARD, Niama BOUKACHABA and Camille BIRMAN CNRM, Météo-France & CNRS

nadia.fourrie@meteo.fr

1.Introduction

2. How to deal with surface parameters in NWP infrared radiances assimilation?

- 3. Enhancing the IASI assimilation over land i. In the global model ii. In the convective scale model
- 4. Summary and future works

1. Operational NWP models at Météo-France

Global model ARPEGE

Horizontal resolution: from 7.5 to 37 km

105 vertical levels (from 10 m up to 0.1 hPa)

Convective-scale model AROME

Horizontal resolution: 1.3 km

90 vertical levels (from 5 m up to 10 hPa) 57,3 % of grid points over land

+ regional models for over-seas regions

1. Current operational global model ARPEGE: Number of obs.

Hyperspectral IR	~ 69 %
MW	~ 15 %
Scatterometer	~ 0.7%
Aircraft + Radiosondes	~ 9%

Hyperspectral data provide information on temperature and humidity in the atmosphere

1. Example of the number of IASI channels assimilated per observation point

- Less channels used over land than over sea
- At most 123 channels assimilated over the sea.

2. Enhancing channel selection over land

Surface-sensitive channels are rejected over land because of surface incertainties in the NWP model.

International Surface working group meeting, 19 July 2017

Û

ΜΕΤΕΟ

FRANCE

2. Land surface parameters: Radiative transfer model

2. Land surface parameters: Methodology

For microwave observations, Karbou et al. (2006) have shown that surfacesensitive channels can be assimilated with an adequatly described surface

Objective: To provide realistic Land Surface Temperature and Land Surface Emissivity to improve IASI Bt simulations and assimilation over land

Step 1 : Retrievals of LST using IASI window channel 1194 Single-Channel method (inversion of the radiative transfer equation)

Step 2 : Allocate retrievals of LST to other IASI Bt simulations Evaluation of Observations departures to Simulations

Step 3 : Assimilation experiments of surface-sensitive IR IASI observations over land

Impacts on analyses and forecasts skills

2. How to deal with surface parameter in NWP ?

We need to

- properly describe land surface **<u>emissivity</u>**
- use an accurate land surface/skin temperature

Use of the emissivity atlas of the University of Wisconsin (Seeman *et al.*, 2008; Borbas *et al.*, 2007)

Retrieval of the surface temperature by using IASI observations. Single-Channel method (inversion of the raditative transfer equation)

2. Land surface emissivity: atlas from UWisconsin

Atlas from the UW/CIMSS (Seeman et al, 2008 ; Borbas et al, 2007) Example for January 2015, for channel 1194 (943.25 cm⁻¹)

2. Land surface temperature: Retrieval from IASI

2. Land surface temperature: retrieval from IASI

Average LST retrieved from IASI channel 1194 (943.25 cm⁻¹) 20 September 2016 – 19 October 2016

International Surface working group meeting, 19 July 2017

3. Enhancing IASI channel selection over land

Once we have

- properly described land surface emissivity
- used an accurate land surface/skin **temperature** for the simulation of the others channels

Then the same channel selection can be used over land and sea

Average number of channels assim. per 1deg box - REFERENCE 01 January 2017 – 31 March 2017

Average number of channels assim. per 1deg box - **NEW** 01 January 2017 – 31 March 2017

Increase of the number of assimilated channels over mid-latitude (tropical regions are cloudy).

Average number of channels assim. per 1deg box - **DIFFERENCE** 01 January 2017 – 31 March 2017

Increase of the number of assimilated channels over mid-latitude (tropical regions are cloudy).

METEO FRANCE

Observation departures for surface channel 1191 (942.5 cm⁻¹) 01 January 2017 – 31 March 2017

Differences of analyses for T@ 925 hPa January 2017

Differences of analyses for T@ 925 hPa January 2017

Impact of the forecast scores : evolution of the 24h forecast error wrt ECMWF analyses.

Case in mesoscale model AROME 15 Jan 2015 @ 09UTC

SEVIRI cloud type + number of additional IASI channels assimilated

Boukachaba et al., submitted to Tellus

Case in mesoscale model AROME 15 Jan 2015 @ 09UTC

SEVIRI cloud type + number of additional IASI channels assimilated

Boukachaba et al., submitted to Tellus

Case in mesoscale model AROME 15 Jan 2015 @ 09UTC

number of additional IASI channels assimilated

Boukachaba et al., submitted to Tellus

3.Forecast scores wrt ECMWF analyses

Root Mean Square error for relative humidity wrt ECMWF analyses 15 January 2015-28 February 2015

Improvement of the relative humidity forecast between the 6 and 24 h forecast range.

METEO FRANCE

Summary and future work

- A realistic land surface description (emissivity atlases+ retrieved land surface temperature) enables the assimilation of IASI down to the surface over land.
- This methodology can be extended to the other infrared hyperpspectral sounders (CrIS, IASI-NG, IRS...)
- However the surface temperature of the model is not directly modified.
- <u>Towards land atmosphere coupled data assimilation</u>
- PhD on the synergy of satellite observations for the definition of surface temperature
- Comparison between surface temperature from various sensors (micro-wave, infrared) onboard different platform (geostationary vs polar-orbiting satellites).
- Assimilation of LST retrieved from satellite observations (preliminary studies with IR observations) in the land surface model.

Bias correction :

predictors computed only over sea

predictors computed over sea and over land

Increase of the number of assimilated channels over mid-latitude (tropical regions are cloudy).

