Coupled COAMPS-LIS-WRF-HYDRO Coastal Flood Applications – Preliminary Results

Sue Chen, Teddy Holt, Jerome Schmidt
Naval Research Laboratory, Monterey
Christa Peters-Lidard, Sujay Kumar
NASA GSFC
Dave Gochis, Aubrey Dugger
National Center for Atmospheric Research
Cecelia DeLuca, Rocky Dunlap, Daniel Rosen
University of Colorado
Mike Ek, Jiarui Dong
NOAA NCEP
John Eylander
Cold Regions Research and Engineering Laboratory
US Army Corps of Engineers

Sponsors: Office of Naval Research, National Oceanographic Partner Program

1st International Surface Working Group (ISWG)
Moss Landing, CA, 19-20 Jul, 2017
Objectives

To provide a new baseline capability for Naval LIS-hydrological modeling by:
• quantifying the impact of the water cycle budget on LND dynamics, via
 the interactive feedback of LIS and WRF-Hydro within the COAMPS ESMF coupling framework
• quantifying the impact of enhanced cloud-microphysical to severe flood
 processes via linkage with COAMPS moist physics parameterizations
• quantifying the feasibility of a “generalized” LND and hydrological
 components within COAMPS

Outlines

• Introduction of NRL Coupled Ocean/Atmosphere Mesoscale Prediction System
• Approach to couple LIS and WRF Hydro with COAMPS
• Preliminary results
 • Atmosphere precipitation and surface parameters
 • LIS soil temperature, soil moisture fraction
 • WRF-HYDRO surface and subsurface runoffs
• Summary
• Future plans
Air-Ocean-Wave-ICE-LSM-Hydro Coupled COAMPS Forecast and Data Assimilation System

User configurable 6 or 12 hr atmosphere update cycle

Atmos OBS

Navgem

Atmosphere BC (Analysis)

GALWEN-LIS

Atmosphere Setup

NCODAQC

SST, SSH ICE, PROF SHIP, GLDR

Ocean OBS

NCODA

DATABASE

GDEM MODAS DBDBV DBDB2 OSUITide Rivers

Ocean Setup

GOFS

Ocean Setup

WAVE Setup

SWAN/WW3

CICE

COAMPS®

Hydrology

LSM

ESMF/NUOPC

CONNECTOR

GLOBE WWS Clim

NCODA QC

obs, remote sensing, text

NAVGEM

Atmosphere Setup

Atmosphere OBS

Ocean Setup

Atmos BC (Analysis)

GALWEN-LIS

Atmosphere Setup

NCODAQC

SST, SSH ICE, PROF SHIP, GLDR

Ocean OBS

NCODA

DATABASE

GDEM MODAS DBDBV DBDB2 OSUITide Rivers

Ocean Setup

GOFS

Ocean Setup

WAVE Setup

SWAN/WW3

CICE

COAMPS®

Hydrology

LSM

ESMF/NUOPC

CONNECTOR
LIS is a comprehensive, interoperable land surface modeling and data assimilation framework.

- Includes the support for:
 - A large suite of land surface models (Noah, CLSM, VIC, JULES, CLM, ...)
 - Data assimilation algorithms (EnKF, EnKS)
 - Remote sensing data products (SMAP, SMOS, AMSR2, ASCAT, GRACE, MODIS, VIIRS, ...)

- Includes computational subsystems for optimization, forward modeling and uncertainty estimation.
Implementation of WRF-Hydro for Naval Applications

WRF-HYDRO’s configuration for COAMPS-LIS-HYDRO is similar to the National Water Model.

COAMPS-LIS-WRF-Hydro
Coupled Ocean/Atmosphere Mesoscale Convective System (COAMPS®)

Table 1 atmos-CICE exchange fields
1. Land surface type
2. sea level pressure
3. surface wind U (10m)
4. surface wind V (10m)
5. air temp (2m)
6. Water vapor mixing ratio (2 m)
7. surface downward short wave flux
8. surface downward longwave flux
9. surface total precipitation
10. relative humidity (2m) *
11. surface net shortwave flux *
12. surface net longwave flux *
13. surface albedo *
14. ground surface temperature (i.e., sea surface temperature)*
15. surface latent heat flux *
16. surface sensible heat flux *
17. surface stress *
* variables may not be actually needed, but are included
Coupled COAMPS-LIS-HYDRO Forecasting System

ESMF NUOPC Caps for COAMPS, LIS and WRF-HYDRO

Complete milestones
- V0.3 – one-way coupled ATM-LND-HYD
- V0.4 - two-way coupled ATM-LND w/ one-way coupled LND-HYD
- V0.5 - two-way coupled ATM-LND w/ two-way coupled LND-HYD
- V0.6 - all six feedbacks turned on, allowing direct interactions between WRF-Hydro and atmosphere
- V0.7 – Integrate with generalized microphysics & LND ensemble perturbations

Near Future Plan
- Evaluate water cycle budget diagnostics for high-resolution coupled experiments
- Refine linkage of hydrology-microphysics within COAMPS/WRF-Hydro framework
- Prototype testing and evaluation of generalized re-locatable COAMPS-OS capability
 - second OCONUS test case – Luzon (Philippine) flood case
- Leverage land and hydrology community advancements (upgrades of LIS and WRF-Hydro in COAMPS-Hydro coupled system)

The land model is typically called as a subroutine of the atmosphere. After introducing LIS as an external land component, a customized NUOPC Connector was created to couple nest-to-nest. Supported connector operations (can be applied in series).
COAMPS HYCCAP Case Study: Hurricane Irene (Aug 2011)

- Cold start 72-h forecast (from 2011082600)
- 3-nests (27-km; 9-km; 3-km)
- LSM: NOAH v3.4
- Two experiments:
 1. “lis” :
 - Initial soil state= Global ~47-km AFWA LIS fields interpolated to COAMPS grid
 - Surface parameters (e.g., soil, vegetation types, terrain, etc.) from COAMPS initialization (USGS-based)
 2. “ldt” :
 - Initial soil state= LIS_HIST file (From Sujay Kumar, NASA-GSFC)
 - Surface parameters (e.g., soil, vegetation types, terrain, etc.) from LDT lis_input file (MODIFIED_IGBP_MODIS_NOAH-based) (from Kumar, NASA-GSFC)
 - Validation using NRL verify against radiosonde and surface (land, ship, buoy) observations
 - ~2h CPU for 72-h fcst on DSRC haise (240 proc)
COAMPS HYCCAP Case Study: Hurricane Irene (Aug 2011)

72-h forecasts from 2011082600 for nest 3 (3-km)

Hourly precipitation (mm h⁻¹)
COAMPS HYCCAP Case Study: Hurricane Irene (Aug 2011)

72-h forecasts from 2011082600 for nest 3 (3-km)

10-cm soil moisture (vol fr)
COAMPS HYCCAP Case Study: Hurricane Irene (Aug 2011)
72-h forecasts from 2011082600 for nest 3 (3-km)
10-cm soil temperature (°C)
Nest 3 subset (3-km) LIS experiment
72-h accumulated precipitation (in)

Nest 3 subset (3-km) LDT experiment
72-h accumulated precipitation (in)

Observed
COAMPS HYCCAP Case Study: Hurricane Irene (Aug 2011)
COAMPS Nest-3 (3-km) near-surface statistics (against land, ship, buoy data)

“LDT” is generally too warm and dry.
COAMPS HYCCAP Case Study: Hurricane Irene (Aug 2011)
COAMPS Nest-3 (3-km) 72-h forecast vertical statistics (against radiosonde data)

“LDT” is generally too warm and dry in boundary layer.
COAMPS HYCCAP Case Study: Hurricane Irene (Aug 2011)

COAMPS Nest-3 (3-km) 10-cm soil moisture (vol frac): Analysis valid 2011082600

- Soil generally drier domain-wide for “ldt”, as compared to “lis”.

Difference ("lis" – “ldt”)
COAMPS HYCCAP Case Study: Hurricane Irene (Aug 2011)

COAMPS Nest-3 (3-km) 10-cm soil moisture (vol frac): 72-h fcst valid 2011082900

Difference ("lis" – “ldt”)

- Soil generally drier domain-wide for “ldt”, as compared to “lis”.

![Map of soil moisture differences](image)
COAMPS HYCCAP Case Study: Hurricane Irene (Aug 2011)

COAMPS Nest-3 (3-km) 10-cm soil temperature (K): Analysis valid 2011082600

Difference ("lis" – "ldt")

- Soil generally warmer domain-wide for "ldt", as compared to "lis".
COAMPS HYCCAP Case Study: Hurricane Irene (Aug 2011)

COAMPS Nest-3 (3-km) 10-cm soil temperature (K): 72-h fcst valid 2011082900

• Soil generally warmer domain-wide for “ldt”, as compared to “lis”.

Difference (“lis” – “ldt”)
COAMPS HYCCAP Case Study: Hurricane Irene (Aug 2011)

COAMPS Nest-3 (3-km) 2-m air temperature (K): 72-h fcst valid 2011082900

- Air temperature bias similar to soil temperature.
COAMPS HYCCAP Case Study: Hurricane Irene (Aug 2011)
COAMPS Nest-3 (3-km) near-surface time series: Tidewater, NC
Observations: NRCS National Water and Climate Center

Air temperature (°C)

Forecast hour

COAMPS 2-m air temperature (°C)

LIS
LDT

Tidewater, NC
COAMPS HYCCAP Case Study: Hurricane Irene (Aug 2011)

COAMPS Nest-3 (3-km) near-surface time series: Tidewater, VA

Observations: NRCS National Water and Climate Center

Air temperature (°C)

Forecast hour

Tidewater, NC

COAMPS 2-m air temperature (°C)

LIS

LDT

Forecast hour
COAMPS-LIS Soil Moisture Forecast Movie

Large change of soil moisture fraction following the Hurricane Irene forecast track
Red line: COAMPS forecast track
Magenta line: Best track
Day 2-3 COAMPS-LIS 20 – 100 m Soil Liquid Fraction Forecast
COAMPS-LIS Soil Temperature Forecast Movie

LIS soiltemp1, 2011-08-26T12
Day 2-3 COAMPS-LIS 20 m – 100 m Soil Temperature Forecast
Implementation of WRF-Hydro for Naval Applications

- one-way coupling of COAMPS-LIS-WRF-Hydro
- Initiated setup of hurricane Irene test case
- Initiated setup of Luzon Island
Surface Runoff Movie

Large surface water runoff following the Hurricane Irene forecast track
Red line: COAMPS forecast track
Magenta line: Best track
Subsurface Runoff Movie

Increased subsurface runoff in the Cape Cod and Delaware Estuary Watersheds
Summary

Key Findings

• To couple LIS and WRF-Hydro with COAMPS via the ESMF NUOPC connectors at every nest time step require us to:
 • move the coupling of the land surface to the end of physics loop
 • develop customized NUOPC nest-to-nest connectors
 • modify COAMPS surface variables to use a much higher-resolution LIS inland water mask (LIS includes lake models)
• COAMPS precipitation is sensitive to the microphysical collection and aerosol concentration in the new generalized microphysics
• The COAMPS-LIS-WRF HYDRO preliminary results are encouraging

Expected Broader Implications

• Provides new capability of hydrology forecast – new battlespace information for coastal Marine Operation
• Improvement of the atmosphere land surface prediction and its feedback to the atmosphere BL
Future Plan

- Refine linkage of hydrology-microphysics within COAMPS/WRF-Hydro framework
- Evaluate water cycle budget diagnostics for high-resolution coupled experiments
- Prototype testing and evaluation of generalized re-locatable capability
 - second flood test case over Luzon, Philippine
- Leverage land and hydrology community advancements
 (upgrades of LIS and WRF-Hydro in COAMPS-Hydro coupled system)
Idealized two-moment COAMPS® Hurricane Prediction

Hurricanes appear to pre-condition the orographic rainfall environment prior to landfall through aerosol transport.

The challenge will be to reliably predict these conditions or other cloud/aerosol interactions in complex mesoscale situations:
- Account for source/sink terms
- Include 3-D initialization (NAAPS)
Modified scheme shifts the main rainband slightly eastward.

Control-Modified (mm)
Precipitation timing, intensity, and total accumulations are sensitive to changes in the sedimentation algorithm. Such changes may alter:
- Downdraft & cold pool dynamics
- Modeled updraft dynamics
- Land/Sea/Hydrology coupling
- Basin-wide precipitation

Precipitation sensitivity in idealized 3-D COAMPS thunderstorm simulations

- $\Delta x = 2000m$
- $\Delta z = 10-50m$ ($z < 7$ km)

Δprecip $\sim 35\%$
COAMPS HYCCAP Case Study: Hurricane Irene (Aug 2011)

72-h forecasts from 2011082600 for nest 3 (3-km)

10-m winds (m s$^{-1}$)
COAMPS HYCCAP Case Study: Hurricane Irene (Aug 2011)

72-h forecasts from 2011082600 for nest 3 (3-km)

2-m relative humidity (%)
COAMPS HYCCAP Case Study: Hurricane Irene (Aug 2011)

72-h forecasts from 2011082600 for nest 3 (3-km)

2-m air temperature (°C)
COAMPS HYCCAP Case Study: Hurricane Irene (Aug 2011)

COAMPS Nest-3 (3-km) near-surface time series: Tidewater, VA

Observations: NRCS National Water and Climate Center

- 24-h = 0.59 in
- 48-h = 5.41 in
- 72-h = 6.52 in

Erroneous?
COAMPS HYCCAP Case Study: Hurricane Irene (Aug 2011)
COAMPS Nest-3 (3-km) near-surface time series: Tidewater, VA
Observations: NRCS National Water and Climate Center

COAMPS accumulated precipitation (in)

SCAN soil moisture (%)
Tidewater, VA

24-h = 0.59 in
48-h = 5.41 in
72-h = 6.52 in

Erroneous?
Implementation of LIS for Naval Applications

- COAMPS-LIS simulations were conducted to generate initial conditions for Hurricane Irene (Aug 2011) case study.
- Noah LSM (v 3.3) was configured over a 3-nested domain, using high resolution vegetation (MODIS) and soils (STATSGO; 1km) parameters.
- The COAMPS and NLDAS2 meteorology was used to drive the LSMs.
- The test domain and initial condition data are used to test/validate a two-way coupled COAMPS-LIS.

NLDAS2-LIS soil moisture forecast