

Evaluation of Satellite Imager Ice Cloud Retrievals using CALIPSO and CloudSat Data

<u>William Smith, Jr.</u>¹, Patrick Minnis ², Chris Yost², Sunny Sun-Mack ², Gang Hong ², Ping Yang ³, Rabindra Palikonda¹ ¹ NASA Langley Research Center, Hampton, VA, USA ² SSAI, Hampton, VA, USA ³ Texas A&M University, College Station, TX, USA

> 2nd Workshop CGMS International Cloud Working Group 29 October – 2 November 2018, Madison, WI USA

- Satellite remote sensing of ice cloud radiative and microphysical properties requires assumptions regarding shape and size distribution of ice particles
- CERES cloud algorithms continue to evolve as we gain better understanding of ice clouds and of our retrieval uncertainties based on comparisons with other data (e.g. active sensors, in situ)
- Daytime solar reflectance methods assuming single habit smooth and roughened hexagonal columns both appear to overestimate optical thickness (which leads to height underestimates for optically thin clouds)
- But, nighttime estimates (COT, Z_t) are quite good

Need more representative ice crystal models and optical properties to improve daytime ice cloud properties and improve spectral (day/night) consistency

- Test passive sensor retrievals derived using 3 ice scattering models
 - 1) SHM single habit model (smooth hexagonals)
 - 2) SHM single habit model (roughened hexagonals)
 - 3) THM two habit model (roughened hexagonals + aggregates)
- Evaluate passive satellite sensor ice cloud properties with CALIPSO/Cloudsat data
- Focus on cirrus: COT, Z, IWP

Passive Sensor

- CERES Edition 4 MODIS cloud properties (March 2008, Feb 2017)
- **CERES GEO** cloud properties (Feb 2017)
 - Himawari-8
 - 1-hr temporal resolution
 - Subset to 6-km spatial res
 - +/-15 min of CALIPSO obs

Active Sensor

- **CALIPSO** V4.10 5-km Cloud Layers products
 - Optical depth and IWP for $\tau < \sim 3$
 - Cloud heights also from 333-m CLAY
- Cloudsat 2C-ICE (P1_R04) (Future Work!!)
 - Combines CALIPSO/CloudSat in variational analysis
 - Retrieves wider range of τ

CERES Ice Crystal Models for MODIS and GEO Cloud Retrievals

Ice cloud particle model	CERES edition
Smooth hexagonal columns	Ed2.0 and Ed3.0
Roughened hexagonal columns	Ed4.0
Two-habit model	Ed5.0 (planned)

- Smooth and Roughened are single habit models assuming hexagonal columns with various sizes and aspect ratios
- Roughened model smooths out the scattering maxima and peaks, leading to a featureless phase function, smaller retrieved COT and larger retrieved particle size compared to Smooth
- New two habit model combines roughened columns with ensemble of aggregates as shown

A few other details

- THM uses continuous particle size distributions (discrete PSD's used in SHM versions)
- THM development guided by comparisons with in situ measurements (IWC, D_{median-mass})

REFERENCES

Yang et al. 2008a and 2008b, IEEE Trans. Geosci. Remote Sens. Liu et al. 2014, Atmos. Chem. Phys. Loeb et al. 2017, J. Climate

From Loeb et al. 2017

Asymmetry Parameter vs Ice Particle Size $\lambda = 0.65 \ \mu m$ (VIS)

In the VIS, the asymmetry parameter, g is largely determined by the effective aspect ratio

THM has smaller effective aspect ratio than the Smooth and Rough models leading to smaller *g*

Smaller g yields lower retrieved COT

g, COT dependence on particle size also different – slightly decreases for THM but increases for Smooth and Rough with increasing size

Optical Properties for Smooth, Rough, THM (De = 65 μm)

Smaller ω_0 for THM than for SHM at 3.7 μ m ω_0 similar for all models at 1.2, 1.6, 2.1 μ m

Similarity theory (Van de Hulst, 1974): Radiance proportional to S= $(1 - \omega_0) / (1 - \omega_0 g)$

Larger g for THM at 3.7 μ m Smaller g for THM at 1.2, 1.6, 2.1 μ m

3.7 μ m: S(THM) > S(SHM) for a given De

- need smaller De to match radiance with THM

Opposite true at shorter NIR wavelengths

So De diffs (e.g 1.6 minus 3.7 μ m) larger for THM

Ice Cloud Property Differences (THM – Smooth)

March 2008, Aqua-MODIS

- THM yields lower COT (-28% globally)
 Larger diffs (> 5) at higher latitudes
 - scat angs closer to PP
 - more sensitive to g

NASA

- Lower COT (IR emissivity) yields positive Height diffs everywhere
 - Global mean increase 290m
 - Increases up to 1km some areas

90

- Particle size differences also large and negative
 - Global mean diff -3.9 μm (-16%)
 - Larger diffs at mid and hi Lats

Note: Cloud fraction and cloud phase differences were very small (not shown)

Cloud Optical Thickness Comparison with CALIPSO

Himawari daytime Ice Clouds; CALIPSO extinction QC = 1 (constrained retrieval)

THM COT agrees better with CALIOP and with nighttime (IR only) method

Cloud Top Height Comparison with CALIPSO

Himawari daytime Ice Clouds; excludes CALIPSO 20km & 80 km detections

non-opaque clouds SHM Mean difference = -3.5 +/- 4.8 km

Yikes, overall Modest improvement with THM

opaque clouds

SHM Mean difference = -1.3 +/- 2.1 km

THM Mean difference = -1.2 + / -2.0 km

THM

Mean difference

= -3.2 +/- 4.5

ML clouds contribute to the bias Modest improvement with THM

Cloud Height Comparison with CALIPSO

Daytime Ice Clouds; Himawari (left) and MODIS (right)

• MODIS better than HIM-8

opaque clouds

HIM-8 Mean difference = -1.3 +/- 2.1 km MODIS Mean difference = -0.6 +/- 1.8 km

ML clouds contribute to the bias

Cirrus Cloud Property Comparison with CALIPSO

Daytime

COT BIN	CALIPSO MEAN	MODIS BIAS
0-1	0.4	1.7
1-2	1.4	1.9
2-3	2.4	2.6
ALL	0.8	1.8

COT BIN	CALIPSO MEAN (km)	SHM BIAS
0-1	12.4	-3.1
1-2	11.6	-2.2
2-3	10.3	-1.3
ALL	12.1	-2.6

COT BIN	CALIPSO MEAN (gm ⁻²)	SHM BIAS
0-1	15.2	25.2
1-2	61.3	-3.9
2-3	121.0	-32.7
ALL	32.5	14.6

HIMAWARI-8

COT BIN	CALIPSO MEAN	SHM BIAS	THM BIAS	N
0-1	0.5	1.1	0.8	3766
1-2	1.4	1.0	0.6	1241
2-3	2.4	1.3	0.7	199
ALL	0.8	1.0	0.7	5265

COT BIN	CALIPSO MEAN (gm ⁻²)	SHM BIAS	THM BIAS	Ν
0-1	15.3	3.4	-2.7	3745
1-2	56.0	-24.4	-34.2	1239
2-3	114.5	-51.3	-75.8	199
ALL	28.8	-5.3	-13.0	5183

Main takeaways:

- COT and height differences reduced using THM
- IWP differences increase using THM
- Height differences decrease with increasing COT
- IWP differences increase with increasing COT
- MODIS compares better to CALIPSO than HIM-8

COT

- The CERES CWG has been evaluating a new two-habit ice model (planned for next Edition 5)
- The goal here was to examine our retrieval differences using the various models and evaluate their relative accuracies with CloudSat/CALIPSO data
- Passive sensor retrievals of ice cloud optical depth and effective particle radius exhibit strong dependence on what ice particle model is assumed
 - Daytime cloud optical thickness and heights derived with THM are in better agreement with CALIPSO/CloudSat data than those derived with previous SHM's
 - Improved spectral consistency also achieved (Day/Night retrievals agree better)
 - 3.7 µm effective radius retrievals also quite different using THM (smaller)
 - IWP accuracies more difficult to assess due to vertical homogeneity assumption (R_e(z) =const).
 - Future comparisons planned w/ CloudSat 2CICE product (combined Cloudsat/CALIPSO)
- More work needed to understand angular dependencies. GEO validation with CALIPSO/CLoudSat provides some new insights (off nadir tests)

QUESTIONS ?

NASA Cloud Optical Thickness Comparison with CALIPSO

Himawari Daytime Ice Clouds; CALIPSO extinction QC = 1 (constrained retrieval)

single-habit

two-habit

View Angle

Scattering Angle

Very Preliminary - need more data

DAY

NIGHT

-5

0

20

30

40

HIM08 view angle

50

60

10

70

80

90

Himawari Cloud Height Comparison with CALIPSO

single-habit non-opaque (dashed) height difference [km] opaque (solid) -1 -2 -3 20 70 80 10 50 60 90 0 30 40 HIM08 view angle height difference [km] -1 -2 -3

two-habit

Cloud effective height can vary with VZA for several reasons:

- (1) Increased path length with VZA tends to raise radiating layer
- (2) 3-D effects
 - Increased cloud amount at higher VZA (less contamination by PC pixels)
 - Less impact of lower clouds in ML conditions

MODIS Cloud Height Comparison vs VZA (2004)

