

Global Statistics on Microphysical and Optical Properties of Cloud-Top Ice Crystals

Bastiaan van Diedenhoven,

Ann Fridlind, Brian Cairns, Andrew Ackerman, Jerome Riedi

Funded by NASA ROSES Aqua-Terra 2013

Ice effective radius from 2007 MODIS-Aqua data

• Ice r_e at cloud top retrieved from shortwave infrared bands

Ice effective radius from 2007 MODIS-Aqua data

- Ice r_e at cloud top retrieved from shortwave infrared bands
- Retrievals depend on assumed ice optical model, specifically asymmetry parameter g

Ice shape and scattering properties

- Scattering properties depend on (in order of importance):
 - 1. Aspect ratio of crystal components
 - 2. Level of distortion/roughness
 - 3. General habit
- Practical model: simple plates & columns with variable aspect ratios and distortion as proxies for complex ice

Ice roughness structures on Electron microscope in the lab Nathan Magee – College on New Jersey

Sublimating stage

The A-Train

Ice shape and asymmetry parameter from multi-angle polarization measurements

- Polarized reflectance samples cloud single scattering features
- Multi-angle polarization depends on shape
- Use simple hexagonal model to retrieve distortion and mean aspect ratio of crystal components
- Asymmetry parameter determined by AR & δ

0.3

0.2

0.1

δ=0.2

Ice shape and asymmetry parameter from 2007 POLDER

- Filters applied (>84 million valid retrievals):
 - Conservative goodness of fit
 - Optical thickness > 5
 - MODIS/POLDER phase flags + 'liquid index'

Ice shape and asymmetry parameter from 2007 POLDER

Retrieved averages:

- *g* = 0.75
- aspect ratio = 0.55
- ~90% plate-like
- distortion = 0.65

MODIS C6 assumed:

- *g* = 0.75
- aspect ratio ≈ 0.65
- aggregate of columns
- distortion = $\sqrt{0.5} \approx 0.7$

0.625

distortion

0.6

0.65

0.675

0.575

Vertical variation of ice properties over ocean

Vertical variation of ice properties over land

Ice growth theory predicts sizes to decrease/increase with decreasing temperature for cold/warm clouds

Ice mass growth rate *decreases* with decreasing temperature in **cold** ice clouds

{1/0} dV/dt (µm³ [sa]⁻¹)

Vertical variation of ice properties over ocean

Observations and theory of aspect ratio evolution from vapor deposition

- Aspect ratios:
 - close to 0.5 (i.e. 1/2)
 - dip to ~0.3 at -15°C (258K)
- Change from columns to plates to columns

Vertical variation of ice properties over land

- Cloud top ice shape and sizes determined by vapor deposition growth
- Aggregation, size sorting, riming, etc. expected to lead to more complex picture *inside* clouds

Variation of shape and asymmetry parameter with effective radius

Cloud chamber and lab studies on roughness/complexity using Small Ice Detector (SID-3) probe

Particle complexity from CPI and PHIPS probes

Particle maximum dimension (microns)

Parametrization of distortion variation with r_e and T

Parametrization of distortion variation with r_e and T

Current ice optical models do not take into account distortion varying with size and temperature

Current ice optical models do not take into account distortion varying with size and temperature

Conclusions

- Multi-angle polarimetry allows retrieval of ice shape characteristics
 - aspect ratio of crystal components
 - Degree of crystal distortion
- Suggests cloud top ice properties mostly determined by vapor growth
- Allows simple parameterization of distortion as function of effective radius and temperature
- Leads to asymmetry parameter decreasing with size in contrast to current models
- Ice shape retrievals method can be applied to
 - Airborne RSP
 - future missions:
 - 3MI
 - PACE polarimeters + Ocean Color Imager
 - CubeSat HARP

Backup

Variation of shape and asymmetry parameter

Polarimetry 'liquid index'

See also

JAS, 2012

- Fit straight line through 120°-160° measurements
- Liquid index = Mean(|fit-measurement|)
- Straight-forward to simulate from model
- Similar to POLDER technique (Goloub et al. 2000)
- LI>0.3 indicates liquid in the column

Ice growth theory predicts sizes to decrease/increase with decreasing temperature for cold/warm clouds

[1/0} dV/dt (µm³ [so]⁻¹)

Cloud reflectance is determined by LWP, effective radius and asymmetry parameter

Visible cloud reflectance: $R \approx \frac{\tau(1-g)}{2\mu_0 + \tau(1-g)}$

 μ_0 = solar zenith angle

 τ = optical thickness

g = asymmetry parameter of phase function

 $\tau \approx LWP \frac{3}{2\rho_i r_e}$ effective radius $r_e = \frac{3V}{4A_n}$ When $\varpi \neq 1$: $R = f(\tau, g, \varpi, \mu_0)$ For ice: $\varpi = f(r_e)$

Variation of asymmetry parameter reduces sensitivity of cloud reflection on crystal size

- Studies show ice size can increase or decrease because of cloudaerosol interactions
- This work shows increased contribution to cloud reflectance by small crystals is diminished by increase of g

Visible reflectance: $R \approx \frac{\tau(1-g)}{2\mu_0 + \tau(1-g)}$ $\tau \approx M \Delta z \frac{3}{2\rho_i r_e}$ Mass extinction coefficient: $2\rho_i r_e$ Scaled mass extinction

coefficient

 $\beta_M = \frac{3}{2\rho_i r_e} \left(1 - g\right)$

scaled mass extinction and size

Single-scattering properties of aggregates of plates

Junshik Um* and Greg M. McFarquhar Dept. of Atmospheric Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA

Projected area decreases with decreasing aggregation index (increasing compactness)

>>>

Effective radius increases with decreasing aggregation index (increasing compactness)

>>>

g decreases with increasing effective radius &

'Effective' aspect ratio increases with effective radius (as components are

more stacked)

Figure 9. Asymmetry parameter (g) at $\lambda = 0.55 \,\mu\text{m}$ of 80 different aggregates of seven 100 μm plates attached together, as functions of (a) AI, (b) 1 - AR, and (c) A_n . The correlation coefficient and constants for a fitting equation, $y = a + b(1 - c^x)$, are embedded

Figure 8. Examples of idealized aggregates of plates with different AI values: (a) AI = 1.0, (b) AI = 0.81, (c) AI = 0.61, and This figure is available in colour online at www.interscience.wiley.com/journal/qj