

Validation of SAFNWC/GEO cloud Top Height and Microphysics

<u>Hervé Le Gléau</u>, Gaëlle Kerdraon, Sonia Péré. Météo-France / CMS Lannion.

Outline

- Eumetsat NWCSAF background
- Cloud Top Height and Microphysics algorithm
- Cloud Top Height and microphysics validation
- Conclusion

Eumetsat NWCSAF background

- NWCSAF is part of Eumetsat ground segment
- NWCSAF is a consortium hosted by spanish meteorological service
- NWCSAF develops and distributes one operational sofware suite to process geostationary metorological satellites
- 140 users are registered, including most European national meteorological services
- This software includes four clouds products developped by Météo-France
- This presentation will focuse on cloud top height and microphysics products retrieved from MSG, GOES and Himawari

Cloud Top Height algorithm

- Retrieve cloud height from infrared radiances requires:
 - vertical profile of air temperature & humidity: forecast by NWP
 - vertical profile of simulated opaque clouds radiances : using RTTOV
- For opaque clouds:

The cloud top pressure corresponds to the best fit between the simulated and measured $10.8\mu m$ radiances (! thermal inversion)

For semi-transparent clouds :

 $10.8\mu m$ radiances contaminated by surface

-> Cloud top pressure computed from a window channel 10.8 μ m and a sounding channel (13.4 μ m, 7.3 μ m, 7.0 μ m or 6.2 μ m)

Cloud Microphysics algorithm

- Cloud phase is obtained (day & night) mainly from 10.8μm and 8.7μm wavelengths, complemented in daytime by the use of 0.6μm, 1.6μm and 2.25μm.
- Cloud droplet/crystal size, optical thickness, liquid and ice water path
 - retrieved only daytime
 - from comparison between simulation (DISORT; mie(water) or Baum(Ice)) and measurements at 0.6μm and 1.6μm wavelengths (Nakajima method)

Global coverage using MSG, GOES and Himawari

Validation dataset

- Satellites and period (2 days per month over one year):
 - MSG1-IO (Oct 2016 Sept 2017)
 - MSG2 (2010)
 - MSG3 (Oct 2016 Sept 2017)
 - MSG4 (Feb -July 2018)
 - Himawari8 (Aug 2015-Sept 2017)
 - GOES16 (Jan July 2018)
- Data used for validation :
 - AMSR microwave imagery
 - Caliop lidar and CPR radar measurements
- To ensure all instruments view the same cloud layer :
 - Too thin caliop cloud layer (optical thickness lower than 0.2) are rejected
 - Colocation lidar/radar/microwave satellite is performed in homogeneous areas
 - Viewing angles are limited to 65 degrees

Cloud Top Height validation with radar and lidar

Bias (satellite-CALIOP) in km.

Std (satellite-CALIOP) in km.

Bias larger with CALIOP lidar Very low bias and Std for low level clouds General agreement between MSG/GOES/Himawari results

Cloud Top Height validation with CPR radar

Cloud Top Height validation with CPR radar

-Smaller bias at disk edges due to thinner layer at top of cloud contributing to measurements.

-This effect can be modelled with RTTOV12 (curve). Not yet accounted for in NWCSAF/GEO SW

Cloud phase validation with lidar

-POD for water clouds are slightly lower for GOES16.

-Better score at daytime and at large viewing angles

Cloud liquid water path validation with AMSR

	MSG1	MSG2	MSG3	MSG4	Himawari8	GOES16
Bias (in g/m²)	-1.79	5.45	-6.67	-3.70	6.28 1.21	2.48
std (in g/m²)	27.40	32.76	29.07	29.36	36.40 34.78	46.80
Correlation coefficient	0.85	0.80	0.82	0.82	0.79 0.80	0.65

-Std is larger for GOES16

-Bias very sensitive to accuracy of solar channel calibration

Cloud Liquid Water Path validation with AMSR

Cloud Ice Water Path validation with radar & lidar (1)

- IWP : (Tau_cloud/0.065)^(1/0.84) heymsfield formulae used in NWCSAF/GEO
- IWP : 0.63*(Tau_cloud/0.065)^(1/0.84) would fit much better DARDAR data

Conclusion and perspective

- NWCSAF/GEO allows to retrieve validated cloud products for a set of geostationary satellite (MSG, GOES, Himawari) allowing a global coverage
- Main objective for the coming years : prepare MTG (launch Q4 2021)
 - Prototyping using Himawari
 - Postdoc position is proposed to analyse in depth the impact MTG/FCI spectral characteristics for cloud phase identification (Météo-France Lannion)
- More information on the NWCSAF SW suite : www.nwcsaf.org

Thanks for your attention !

and the second second second second

gaelle.kerdraon@meteo.fr herve.legleau@meteo.fr sonia.pere@meteo.fr