Indirect aerosol forcing estimates over southeast and northeast Atlantic marine stratiform clouds

Seethala Chellappan
Senior Research Scientist at Finnish Meteorological Institute

M Pitkänen, A Lipponen, Á Horváth, S Polade, H Jethva, R Bennartz, S Romakkaniemi, A Arola

ICWG-2 Wisconsin-Madison
31 October 2018
Satellite estimates of indirect aerosol forcing are still uncertain – for stratocumulus cloud regime

1. Likely, due to the uncertainties in the strength of slopes of N_d versus AOD and AI
2. Due to not accounting co-variations in large-scale meteorology
Objectives

At a higher resolution of 25kmx25km

1. To evaluate the strength of slopes of N_d versus AI and cloud properties

1. To study the dependency of these slopes on large-scale meteorology

2. To estimate Aerosol indirect forcing - Intrinsic (cloud albedo effect) and extrinsic (cloud lifetime effect) terms
Data and Methodology

- MODIS Aqua C6.1 L2 cloud and aerosol products & OMI-ACA retrieval
- AMSR-2 V8 LWP, SST, and rain rate
- CERES Aqua TOA radiation measurements
- MODIS and CERES data are collocated onto 25km AMSR-2 grid within the time difference of 15 minutes
- MERRA-2 meteorology and aerosol analysis data

Study period: 06/2015 – 05/2018

- Single layer liquid clouds with ice-free pixels, $\text{CTT}>273K$ and $\omega_{700}>0$
- Cloud droplet concentration (N_d) is computed following Bennartz and Rausch (2017) using r_e at 3.7 μm and Quaas et al. (2008) using r_e at 2.1 μm.
- Anthropogenic fraction calculated following Bellouin et al. (2013)
- Aerosol indirect forcing is computed following Chen et al. 2014
- Analyzed 25km grid-boxes with LCF>10% and rain rate=0.
Cloud and Aerosol Properties – June - Nov 2015-2018

- Southeast Atlantic Sc – Smoke plume
- Northeast Atlantic Sc – Desert dust
Southeast Atlantic Stratocumulus (smoke)

OLS slopes of $\ln(N_d)$ versus Cloud and Aerosol parameters

- LWP, CER – Negative slope
- COT, cl-albedo, LCF – Positive slope
- AOD, AI – Positive slope
Bayesian and ODR slopes are steeper than OLS.
Large-scale meteorology and surface fluxes – Jun - Nov 2015-2018

- Cloud amount increase – Cooler SST, increased SLP, SWS, LHF, cooler SST-adv, stronger EIS and w700, drier and warm FT (RH700, T700)
- LWP increase – moist FT RH700
Slopes of $\ln(N_d)$ vs. cloud and aerosol parameters
Dependency on AMSR-2 LWP and MODIS LCF

- The relationships are strongest at overcast condition, and increased with increasing LWP

5.2.2019
Slopes of $\ln(N_d)$ vs. cloud and aerosol parameters
Dependency on CTH and cloud depth

- The negative LWP and CER slopes are steepest when the clouds are thicker and below 1km.
- Similarly, positive LCF, COT, cl-albedo slopes are steepest.
- AOD slopes are steeper either when the clouds are thicker or at higher top height.
Slopes of ln(N_d) vs. cloud and aerosol parameters
Dependency on RH700 and ω_{700}

<table>
<thead>
<tr>
<th>ω_{700} (hPa/s)</th>
<th>ln(Nd) vs. MODIS LWP</th>
<th>ln(Nd) vs. AMSR-2 LWP</th>
<th>ln(Nd) vs. MODIS COT</th>
<th>ln(Nd) vs. MODIS CER</th>
<th>ln(Nd) vs. CERES cl-d-albedo</th>
<th>ln(Nd) vs. MODIS LCF</th>
<th>ln(Nd) vs. MODIS ln(AOD)</th>
<th>ln(Nd) vs. MERRA-2 ln(AOD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>-16 -6 -15 59</td>
<td>-51 -119 -99 179</td>
<td>0.4 1.4 0.7 9.1</td>
<td>-5.5 -4.6 -4.8 -1.6</td>
<td>4.4 -1.0 0.8 30.7</td>
<td>13 32 18 76</td>
<td>0.15 0.03 0.09 0.56</td>
<td>0.15 -0.42 -0.23 0.59</td>
</tr>
<tr>
<td>0.2</td>
<td>-19 -17 -11 -3</td>
<td>-31 -27 -25 -22</td>
<td>0.5 0.5 1.1 1.6</td>
<td>-5.2 -5.3 -5.2 -4.9</td>
<td>3.9 3.9 4.0 4.4</td>
<td>16 17 19 20</td>
<td>0.22 0.14 0.08 0.02</td>
<td>0.26 0.12 0.05 -0.01</td>
</tr>
</tbody>
</table>

- N_d versus AOD slopes are steeper for stronger subsidence regime, especially at warmer SST and moist Free-troposphere.
- Similar results obtained for cloud properties as well, except that N_d versus CER and LCF slopes are steepest at cooler SST.
Intrinsic Forcing or cloud albedo effect is estimated as

\[\Delta a \cdot \bar{C}_m \cdot \left(\frac{dA_{clr}}{d\ln(AI)} - \frac{dA_{cld}}{d\ln(AI)} \right) \cdot F^\downarrow \]

Extrinsic Forcing or cloud lifetime effect is estimated as

\[\Delta a \cdot (A_{clr} - A_{cld}) \cdot \frac{dC_f}{d\ln(AI)} \cdot F^\downarrow \]

A is albedo
F^\downarrow is incoming shortwave radiation
C_f is cloud fraction

as in Chen et al. 2014
MERRA-2 Aerosol classifications following Bellouin et al. 2013

Anthropogenic – 31%
Marine – 53%
Dust – 16%
Forcing estimates (Jun – Nov 2015-2018)

Anthropogenic

Cloud albedo

Cloud lifetime effect

Dust

Cloud albedo

Cloud lifetime effect

Episodic Smoke and Dust regime \rightarrow Large positive forcing estimates
Less polluted Sc regime \rightarrow Large negative forcing estimates
Summary

- N_d versus AI slopes are steeper at a higher resolution satellite measurements.

- Also, advanced fitting methods that consider uncertainty in both X and Y axis are recommended over OLS fitting to compute slope.

- Compute aerosol indirect forcing based on slopes from advanced regression methods.

- Include the effect of meteorology into the forcing computation.
Slopes of $\ln(N_d)$ versus Cloud and Aerosol Products – 2015-2018
Northeast Atlantic Stratocumulus (dust)

OLS slopes of $\ln(N_d)$ with cloud and aerosol parameters
Northeast Atlantic Stratocumulus (less dust)

OLS slopes of $\ln(N_d)$ with cloud and aerosol parameters
Southeast Atlantic Stratocumulus (smoke)
OLS, Bayesian, Orthogonal Distance Regression ODR slopes of ln(N_d) with cloud and aerosol parameters
Northeast Atlantic Stratocumulus (dust)

OLS, Bayesian, ODR slopes of $\ln(N_d)$ with cloud and aerosol parameters
Northeast Atlantic Stratocumulus (less dust)
OLS, Bayesian, ODR slopes of $\ln(N_d)$ with cloud and aerosol parameters
The negative LWP and CER slopes are steepest when the clouds are thicker and below 1km.
Similarly, positive LCF, COT, cl-albedo slopes are steepest.
AOD slopes does not show any dependency on SST-advection or EIS.
MERRA-2 Aerosol classifications following Bellouin et al. 2013

Dec – May (2015-2018)

Anthropogenic – 26%
Marine – 56%
Dust – 18%

Anthropogenic – 31%
Marine – 53%
Dust – 16%
SEA Sc regime → Large negative forcing estimates with means of about -2.45 W/m² and -2.97 W/m² respectively for cloud albedo and cloud lifetime effect.

NEA dust domain indicates a large positive forcing