

Royal Netherlands Meteorological Institute Ministry of Infrastructure and Water Management

Investigating the sensitivity of SEVIRI liquid cloud optical properties retrieval to illumination conditions using two MSG satellites

Nikos Benas¹, Jan Fokke Meirink¹, Martin Stengel², Piet Stammes¹

¹Royal Netherlands Meteorological Institute (KNMI), The Netherlands ²Deutscher Wetterdienst (DWD), Germany

2nd International Cloud Working Group, 30/10/2018

Introduction Identifying the problem

2 Our approach *Combining MSG-1 and MSG-3*

3 Results Effects of varying the droplet size distribution

4 Summary and outlook

Presentation Outline

Introduction

SEVIRI and CLAAS-2

SEVIRI

- On board geostationary satellites Meteosat-8,
 - 9, 10, 11 (aka MSG-1, 2, 3, 4)
- 12 channels
- 15-minute repetition cycle

CM SAF data record CLAAS-2

- 2004 2015 (extended to 2017)
- L2: 15-min, native 3 km × 3 km
- L3: daily, monthly mean and monthly mean diurnal cycle (0.05° × 0.05°)
- Cloud fraction, top, phase, τ , r_{e} , water path

Image credit: moments-from-space.com

Benas et al., 2017

Introduction

The problem

February 5, 2019

Introduction

Retrieval details

1. Assume a droplet size distribution

The two parameter gamma size distribution

$$n(r) = N_0 r^{\frac{1-3v_e}{v_e}} \exp\left(\frac{-r}{r_e v_e}\right)$$

2nd International Cloud Working Group

February 5, 2019

Typical values of v_e in satellite retrievals

- 0.10 (MODIS C6, PATMOS-x)
- 0.11 (CC4CL)
- 0.13 (MODIS C5)
- 0.15 (CLARA-A2, CLAAS-2, ISCCP)

2nd International Cloud Working Group February 5, 2019

Introduction

- Combined use of MSG-1 (41.5° E) and MSG-3 (0.0°)
- Focus on a marine and a continental region and on specific days with uniform cloud cover
- Retrieve optical properties using different v_e and compare
- Repeat for channel pairs (0.6µm, 1.6µm) and (0.6µm, 3.9µm)

Our approach

MSG-1 vs. MSG-3

- S. Atlantic, 7 March 2017
- Retrievals with $v_e = 0.15$
- Irregularities in cloud bow and glory conditions

Biases with varying v_e

- Effect in *τ* pronounced in the cloud glory
- Overlap of glory and bow effects in r_e

February 5, 2019

Retrievals with varying v_e

• Differences due to v_e

	Т	r _e
Mean diurnal	0.4	1 µm
Glory time slots	2.0	5 µm

- Diurnal variations smoother for $v_e < 0.10$
- No effect of v_e on cloud bow

Retrievals vs. LUTs

See also Cho et al. (2015)

Retrievals vs. phase functions

Hour (UTC)

Using the 3.9 μm channel

- The narrower DSD, the better?
- No apparent improvement for v_e < 0.10 in MSG-3
- 3.9 µm retrieval also suggests narrower distributions

Using the 3.9 μm channel

Focusing on another region

- Indications of broader size distributions
- *r_e* "collapse" in cloud glory due to different max. angle

Discussion

Cloud type	ν _e (μ ± 1σ)
Continental (Miles et al., 2000)	0.20 ± 0.17
Marine (Miles et al., 2000)	0.17 ± 0.15
Marine Sc (Miles et al., 2000)	0.13 ± 0.08
Marine Sc (Mayer et al., 2004)	0.01 ± 0.002
Shallow Cu (Igel and van den Heever, 2017)	0.09 ± 0.04
Marine Sc (Painemal & Zuidema, 2011)	0.07 ± 0.04 (average profile) 0.04 ± 0.04 (cloud top)

2nd International Cloud Working Group

February 5, 2019

- Irregularities reported in diurnal cycles of cloud optical properties were associated with cloud bow and cloud glory illumination geometries
- Cloud bow irregularities are not affected by varying the size distribution width, but disappear when the 3.9 μm channel is used instead of the 1.6 μm.
- Retrievals in the **cloud glory** are clearly linked to the **width of the droplet size distribution** used.
- Our results and the literature suggest optimal values of v_e around 0.05, at least for marine low clouds, contrary to the typical values used in satellite retrievals (0.10-0.15)
- Potential to retrieve v_e in certain regions under specific illumination conditions

CLAAS-3 outlook

- **Update** in liquid cloud v_e (CLAAS-2: 0.15)
- Retrieval of liquid cloud optical properties from both 1.6 μm and 3.9 μm (CLAAS-2: only 1.6 μm)
- Estimation and inclusion of **CDNC** in the data record
- Reconsiderations in cloud mask and cloud height retrieval algorithms
- Improved uncertainty estimates
- Cover period: 2004 2020 (CLAAS-2: 2004 2015/2017)
- Planned release: 2021