Advances in Quantifying Uncertainties in Passive Microwave Observations of Cloud Liquid Water for Climate Applications

Tom Greenwald

Cooperative Institute for Meteorological Satellite Studies University of Wisconsin-Madison

Motivation

- Observations of CLWP an essential climate variable can provide important constraints on climate model simulations
- Multisensor Advanced Climatology of Liquid Water Path (MAC-LWP) CDR (30 year record)
 - <u>Strengths</u>: combines all conically scanning sensors (intercalibrated); includes sampling errors
 - <u>Weaknesses</u>: Lacks inherent uncertainties and validation
- Numerous studies have investigated CLWP errors using multi-sensor satellite data but these errors are not easily used by data users
- NASA MEaSUREs 5-yr project: "A Data Record of the Cloudy Boundary Layer" (PI: Teixiera, JPL)
 - Enhanced MAC-LWP (Elsaesser et al. 2017)
 - Developed an extended uncertainty data set for passive microwave observed CLWP (Greenwald et al. 2018)

Content

- Development of a CLWP uncertainty data set
- Main sources of systematic error
- Space/time characteristics of errors
- Conclusions

Creating an Uncertainty Data Set

- Focus on warm clouds (easier problem)
- Use reasonably long record from a single wellcalibrated microwave sensor (e.g., AMSR-E)
- Use of merged satellite observations for deriving cloud properties and quantifying CLWP errors:
 - 2008 collocated multisensor data set (AMSR-E/MODIS*/ CPR/CALIOP)
 - Combined AMSR-E/MODIS* L2C 9.25-yr data set; fast collocation algorithm developed at SSEC (Nagle & Holz 2009)

Main Sources of Systematic Error

• Clear-sky bias

- Error associated with not separating clear scenes from cloudy scenes. Bias varies due to uncertainties in gas absorption and surface emissivity; greatest impact is in partial cloudiness
- Cloud-rain partition bias
 - Relates to assumptions made in hcv/ CI W/D and rain water path are separated
 0.10 ---- AMSR-E climatology 0.10 ---- MODIS climatology
- Cloud temperature bias
- Cloud-fraction-dependent bias
 - Actually a combination of several biases

ICWG-2 29 October to 2 November 2018

Clear-Sky Bias

 Bias varies with surface wind speed and TPW

ICWG-2 29 October to 2 November 2018

Dust: A New Source of Error?

11/01/2018

ICWG-2 29 October to 2 November 2018

Cloud-Rain Partition Bias

- Improved cloud-rain partition parameterization for warm clouds using the 2008 collocated multisensor dataset
 - MODIS cloud mask, CLWP_{0.86/3.7}
 - AMSR-E R, 36.5 GHz τ
 - CPR RWC, H, CLWP
 - CALIOP CTT
- Restrictions
 - Overcast AMSR-E FOVs
 - SZA < 45°

$$\mathsf{CLWP} = \alpha \ (1 + \beta (\mathsf{HR})^{\gamma})$$

Limits of Drizzle/Rain Detection

Greenwald et al. (2018)

Improved sensitivity to drizzle and light rain:

- Variable LWP threshold
- 1DVAR with error covariances derived from in situ dropsize distributions

ICWG-2 29 October to 2 November 2018

Cloud Temperature Bias

- Apply adiabatic theory and use MODIS cloud top properties
- Adiabatic assumption valid for Sc in a well-mixed BL but slightly underestimates bias for Cu
- Overall impact of cloud temperature bias is rather small for warm clouds

Greenwald et al. 2018

Cloud-Fraction-Dependent Bias

- Adjacent precipitation bias ("rain-free" scenes)
- Cloud-rain partition bias
- In-cloud bias

In-cloud bias characteristics

Applying the Error Analysis

- Clear-sky bias
 - AMSR-E CLWP
 - MODIS cloud mask
- Cloud-rain-partition bias
 - AMSR-E R, τ_{36.5}
 - MODIS cloud mask, CTT/CTH
- Cloud temperature bias
 - AMSR-E CLWP, SST
 - MODIS cloud mask, CTT/CTH
- Cloud-fraction-dependent bias
 - AMSR-E CLWP, TPW, wind speed
 - MODIS cloud mask, CTT

Space/Time Variability of Errors

(a) Clear sky

-0.02 -0.01 0.01 0.02 0 LWP (kg/m²)

-0.02 LWP (kg/m²)

(e) Cloud temperature

-0.01

-0.02

0

(d) In-cloud

-0.02 -0.01 0.01 0.02 0 LWP (kg/m²)

0.005 0.01 0.015 0.02 LWP (kg/m²)

(d) In-cloud

11/01/2018

0.005 0.01 0.015 0.02 LWP (kg/m²

9-yr Mean (b) Cloud-rain partition

-0.01 0.01 0.02

-0.02 -0.01 0.01 0 LWP (kg/m²)

-0.02 0 0.02 LWP (kg/m²)

0.01

LWP (kg/m²)

0.015

0.03

0.01

LWP (kg/m²)

0 0.005 0.01 0.015 0.02 LWP (kg/m²)

(e) Cloud temperature

Latitude (deg.)

ICWG-2 29 October to 2 November 2018

Zonal

0.04

0.02

0.02 -0.04

(c) Adjacent precipitation

0.005

0

Conclusions

- Combining passive microwave and visible-infrared data is essential in quantifying errors and improving the accuracy of these observations
- Uncertainties in passive microwave-derived CLWP observations are dominated by cloud-rain partition and in-cloud biases
- Plan is to extend the error analysis to other cloud types and sensors for CDRs like MAC-LWP
 - ISCCP HX series cloud data sets (~10 km; 3 hourly)
 - Develop CRP schemes using dual-frequency radars (DPR)
 - Improved rain detection methods (e.g., Duncan et al. 2018)

Backup slides

