MW remote sensing of clouds. Climate context

Ralf Bennartz EES, Vanderbilt University SSEC, University of Wisconsin

Outline

- Long-term climatologies of LWP
- Constraining climate models
- Ice clouds
- Conclusions/Outlook

MW: Principle of retrieval

- Use 2 channels and polarization difference to estimate WVP, LWP
- Also affected by rain water
- Separation of RWP/LWP critical.

MW: Principle of retrieval

- Use 2 channels and polarization difference to estimate WVP, LWP
- Also affected by rain water, wind, cloud temperature
- Separation of RWP/LWP critical.

MW Cloud liquid water path climatology

- Based on Wentz SSM/I since 1987, AMSR-E, and TMI
- Monthly diurnal mean liquid water path
- Climatological diurnal cycle
- O' Dell, Wentz, and Bennartz, J Climate, 2008,
- Elsasser et al., J Climate 2017
- Various limitations for high LWP (due to presence of rain), slight biases for low LWP
- NASA Measures project (2013-2018)

Data Record

 SSM/I, SSMIS Morning/Evening Coverage since 1987

TRMM/GPM crisscrossing in LEXT since 1997 resp 2014

 AMSR-E/AMSR-2 13:30 LEXT

MWI on EUMETSAT/ EPS-SG early afternoon orbit

The diurnal cycle of LWP

Long-term satellite studies of LWP must account for the diurnal cycle. Otherwise, satellite drifts will lead to an aliasing of the diurnal cycle onto trends of LWP.

Climatology available GES-DISC & J. Climate paper Dec. 2017

15 DECEMBER 2017

ELSAESSER ET AL.

10193

The Multisensor Advanced Climatology of Liquid Water Path (MAC-LWP)

GREGORY S. ELSAESSER,^{a,b} CHRISTOPHER W. O'DELL,^c MATTHEW D. LEBSOCK,^d RALF BENNARTZ,^e THOMAS J. GREENWALD,^f AND FRANK J. WENTZ^g

^a Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York ^bNASA Goddard Institute for Space Studies, New York, New York ^c Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado ^d Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California ^e Department of Earth and Environmental Sciences, Vanderbilt University, Nashville, Tennessee ^f Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin ^g Remote Sensing Systems, Santa Rosa, California

Cycle Amplitude

Additional information on data access and documentation for these products is available on the data set landing pages.

- MACLWP mean: https://dx.doi.org/10.5067/MEASURES/MACLWPM
- MACTWP_mean: https://dx.doi.org/10.5067/MEASURES/MACTWPM

Liquid water path, observations versus IPCC AR-4 (CMIP-3)

CCSM3

Lauer et al. (2012)

UKMO-HadCM3

Liquid water path, observations versus IPCC AR-5 (CMIP-5)

Lauer et al. (2012)

Model with too thick clouds

IAE will be too weak (saturation)

Precipitation processes

Constraining warm cloud physics

(Bennartz, et al. ,2011b)

Constraining warm cloud physics

(Bennartz et al. ,2011)

Constraining warm cloud physics

Cloud Ice

(Eliasson et al, 2011)

(Buehler et al. 2012)

MW observations

- Highly valuable long-term dataset of cloud LWP over ocean based on conically scanning MW sensors (SSM/I heritage).
- Including a climatological diurnal cycle
- Continuation of this time series is highly desirable.
- Sub-millimeter will extend these capabilities to ice clouds. With ICI and other sub-mm sensors upcoming, community needs to prepare
- Synergy VIS/NIR/MW under-exploited.