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Why important

ICWG-2,

to have consistent ice water path (IWP) olbs.

> TIWP = CIWP + PIWP

total lce Floating snow
cloud (precipitating ice)

++* GCMs do not have PIWP -
radiative effect ~ 5-15 W/m?
@ TOA (Li et al., 2013)

»*Mean CIWP by 1 - 2 folds
across CMIP5 models

< Observational constraints are
required.
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ICWG-2,

to have consistent ice water path (IWP) olbs.

> TIWP = CIWP + PIWP
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cloud (precipitating ice)

VIS/IR MW
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Why important
to have MW ice cloud diurnal cycle?

> VIS/IR ice clouds are the “old” clouds that hang out there;
> MW ice cloud is the origin of VIS/IR ice cloud;

> Large variability of microphysics — ice cloud properties
retrieved near the cloud top is not representative of the whole
column.

> MW ice cloud also likely precipitates, which means it plays a
key role in the hydrological cycle.
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‘Why important
~ to have MW ice cloud diurnal cycle?
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to have MW ice cloud diurnal cycle’?
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ICWG-2,

to have MW ice cloud diurnal cycle’?
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Pros and Cons

for MW sensor to study diurnal cycle?

Pros
> Day/Night

> Long-record (30+ years)

» High-frequency (>150 GHz)
dominated by near-linear TB-
IWP relationship

cons

> Not sensitive to thin ice cloud
> No geostationary platform

> TB-IWP relationship hard to be
simulated accurately due to
complexity of ice
microphysics



GPM Microwave Imager (GMI):
(10-183 GHz)

Dual-Frequency

Percipitation Radar (DPR):
KuPR: Ku-band (13.6 GHz)
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Global Precipitation Measurement

Microwave Imager (GPM-GMI)
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Footprint size: 4.4 km X 7.2 km

High-frequency
polarized pairs at 166
and 183 GHz - suitable
for this project



GMI TB-CloudSat IWP relationship

(o) 166V GHz

(b) 166H GHz
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i sing CloudSat-Calipso as the baseline to construct/validate
" ‘ms_istency from passive cloud data record
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ICWG-2, 2018
One month of TB PDFs at near GMI view-angle
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In the read world ... In model and satellite retrieval world ...

supersaturation (g m3)

-15
temperature (°C)

* |ce crystal microphysical properties include shape, size, density, and orientation.
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 Horizontally aligned ice crystals are observed by CALIPSO lidar and passive sensor
at visible spectrum (e.g., POLDER, DSCOVR-EPIC), What about other

wavelengths?

« If polarization difference is identified in MW spectrum, does it see the same
property as what lidar/passive VIS see?

« What about NIR/FIR?

Previous Studies Shed Some Light on Using

Passive High-frequency Microwave Channels

** High frequency Microwave (MW) channels (> 85 GHz, or wavelength < 3.3 mm) are
particularly suitable for observing ice cloud and frozen hydrometers, as the signals are
dominated by ice scattering and not “polluted” by surface emissivity or liquid cloud/rain
absorptions.

“* The higher the MW channel frequency is, the smaller ice crystal it is sensitive to.

** Polarimetric MW measurements have been proven to provide a useful view of revealing
ice particle’s shape and orientation (Czekala 1998; Xie and miao 2011; Prigent et al.,
2005; Davis et al., 2007; Homeyer and Kumijian, 2015).
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Polarimetric Difference (PD)

> Polarimetric Difference (PD) is defined as radiance difference
between the vertically and horizontally polarized channel
measurements at the same frequency:

% PD — TBU — TBh
H-pol SV N » Passing through the same ice cloud/frozen
wave hydrometer layer with frozen particles orient to
some degree the same direction, V-pol and H-
pol naturally experience different optical
thickness.
1, < 1y In this case when the ice plate orients
parallel to the H-pol wave, meaning that TB,, >
TBy, or PD > 0.



Black circles are over ocean, which is strongly polarized over clear-
sky calm surface (like a mirror).

A squall line case

Colorbar: 183+/-3 GHz TB (directly correlate to ice water path)
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we¥  This upside down "bell” curve holds for different
L@\ high-frequency MW measurements
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ATb (V=H) [K]

(a) PDF, Ocean, [0, T0ON], July 2015
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166 GHz

Diurnal Variation of PD
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Composite the PD-TB curve for every 2 hours using GMI data
between 25°S and 25°N during 2014-2017.

> The PD-TB curves converge
at both the warm and cold
sides, and the peak of PD
occurs at ~ same TB.

> So the peak of PD becomes

the only metrics to measure
the curvature of the curve.

> PDpeqi varies little (~6%)

over tropical ocean during a
day, but a lot (~ 35%) over
tropical land.
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Ice crystal microphysics have strong diurnal
variation over tropical land. The diurnal
cycle of ice microphysics is tied closely with
ice cloud and surface precipitation
evolvement.
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ICWG-2, 2018
Diurnal Variation of PD
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Using coarser temporal resolution may distort the signal.
We need more frequent observations!

At =2 hr At = 3 hr
(c) Ocean (d) Land (c) Ocean (d) Land
T A . Mo B PSRN v oL B T A . Mo B PSRN v oL B
1.0 10 X110
-10 -5 0O 5] 10 -10 -5 0O 5] 10
Lag Time [hr] Lag Time [hr]

> Using At = 1 hr also resultin 2 hr lag-time, but the time series become
more noisy because of lack of enough samples to make statistics robust.
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Conclusions

> High-frequency (>150 GHz) passive microwave can retrieve “floating snow” cloud IWP.

> High-frequency MW polarimetric measurements are powerful and full of potentials of
inferring ice cloud microphysical properties.

> PD (TB,-TB,,) is a function of ice crystal shape, size and orientation. How to disentangle
each contribution requires further fully-polarized 3D radiative transfer model simulations
with proper representation of ice scattering properties and ambient air dynamic and
thermodynamic conditions.

> Procession orbit design of GPM core satellite endows us an unprecedented opportunity to
study the diurnal behavior of ice cloud and its microphysics. We found that it takes less
than 2 hrs over tropical land for deep convective cloud to shoot to the upper-troposphere,
while thin cloud generated from the outflow takes much slower timescale to develop and
dissipate. Ice microphysics vary greatly (up to 35%) over tropical land during a day.

> The diurnal evolution of PD leads that of ice cloud and precipitation macrophysical
properties (mean thickness, precipitation rate), which reveals that understanding the
variations in ice microphysics is necessary to predict, infer and model the bulk
properties of the ice clouds and their overall evolution linked to precipitation and
radiative processes.
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183 GHz differentiation in
thick-cloudy-sky might be
useful for cloud profiling

One month of

5MI view-angle

ters
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differentiation may
be useful for small
IWP or very large

\IWP retrievals
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A fully polarized RTM simulation

> PD signal is a function of ice shape, size, and orientation.

640 GHz 1 _
e N - | Radiative transfer cannot explain the
ol T2 (@) =20 2o entire features. In the real world,
1 40} I 10} dynamics also play a critical role.
| i s __N
< < : . ,
97 135 173 211 230 98 136 174 212 250 » 100% horizontal orientation everywhere
TBH [K] TBH [K] is NOT a good assumption inside
P — convective core.
= 80 [/ F8XD|a - ()] = ;Ig  rese/o (d) > Turbule_nce, su_per-cooled water layer
T enl/ ] T Bt above ice, orirreqular-shaped large
1 a0} - L 2 3 ..»;.,'L, _ particles like graupel brought up by
~ 20t L s 3 “A ; vigorous vertical velocities may all play
@ “H \ o 3 = -y .
5 5 critical roles on explaining the diminish
93 132 171 210 250 112 147 181 215 250 of PD Signal when cloud becomes
TBH [K] TBH [K]

optically thick.

v

RTét of PolTranRad is a fully polarized RTM (Evans and Stephens, 1995, JAS). It assumes 100% horizontal alignment of ice crystals, and computes the [I, Q, U,
V] Stoke’s parameters layer by layer.

For this simulation, RT4 is modified to GMI's viewing geometry. Yang et al. (2013, JAS)'s shape parameters were employed (only designed for 0.2-100 um
cloud ice crystals but our simulations here run from 200 — 400 um for effective radius). Surface is ideal (Frensnel or Lambertian).
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NEP  Explanation of the Leading of lce Microphysical
Change to Ice Cloud Coverage/Mass Change

FT+F * F and F represent the upward and downward fluxes of infrared radiation,
= respectively; T is atmospheric temperature; o the Stefan-Boltzman constant.
20T*
O *1n,< 1 near cloud top.

n,
I-

aT* oT*

alrt I\-\I _
R
R
<« ﬁ
=

Ice crystals with different orientations/sizes/shapes

* receive different upward and downward radiative fluxes

e Possess different temperatures, and subsequently

e Have different saturation water vapor pressure around them.
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a)’]

(In

Mass Density [g m*

Explanation of the Leading of Ice Microphysical

Change to Ice Cloud Coverage/Mass Change
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t=3 hrs

After 3 hrs,

e vertically oriented plate barely changes size

* horizontally oriented plates become precipitation, left with less cloud coverage
e Sphere crystals start to dissipate.

(Zeng, 2018; Zeng et al., submitted)
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L@\ Interpretation by a simple 2-layer conceptual model

> Assuming all frozen hydrometers are - Ty TV
horizontally oriented, naturally V-pol and H-pol TATye 4T (1-e )
pass through the same cloud with different T =T. e 24T (1-eT2H
optical depths (7, and },) H "1H A )

> If background is unpolarized, T;,, = Ty, and TJFT rwG+Tz(1-w0]

sca
PD = (Tl_T])(e—‘L'zv — e~ Tz2h) . _E
For cloud with large optical depth, PD - 0 iicki TV TH

For thin cloud, = lve-m' TIHe-r2H+TJ(e-r2H'e-r2V)
PD = (T1—T])(T2v T B0

Define Aspect Ratio (AR = **"/z,,), PD =

BESNEN AR 5.1) 75 L

o N ‘G‘?‘ U§ i 'ig" ] e qu Hnei"
i . i i il =) ="
T ata ava, 09 ::?:o‘o:a e ‘9H§Q§,nfof:§:,_g:fﬁ£’_,::?£ofo e A
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Y

#@erpretation by a Radiative Transfer Model (RTM)
using the conceptual model

89 GHz 166 GHz 640 GHz
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its the best with thibs. from 89, 166 and 640 GHz.

nese hr‘an#&‘l‘s are sensitive to different particle sizes (89 GHz sensitive to frozen hydrometers while
ﬁ%; ensit o small cloud ice crystals), AR is not expected to remain the same for different frequencies.
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T a8 T > Varying AR in the simulations can produce
R F different standard deviations. "Best-fit” is
i i defined as where the minimum of
2’ 2 standard deviation is achieved.
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‘4 Explanation: Diurnal Variation of Aspect Ratio (AR)
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arger AR corresponds to more percentage of horizontally
riented ice crystals, or flatter ice crystals, or relate to size
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