

1. Spec. of Himawari-8 Advanced Himawari Imager

	•	
No.	Wavelength(µm)	Resolution
1	0.47	4 1500
2	0.51	1 km
3	0.64	0.5 km
4	0.86	1 km
5	1.6	
6	2.3	
7	3.9	
8	6.2	2 km
9	6.9	
10	7.3	
11	8.6	Z KIII
12	9.6	
13	10.4	
14	11.2	
15	12.4	
16	13.3	

Temporal resolution:

- Full disk: 10 min.
- Japan and mobile obs.: 2.5 min.

2. Himawari Cloud Products

Business Support Center

Foreign Countries

For forecast, disaster mitigation, monitoring, business...

2. Himawari Cloud Products

Fundamental Cloud Product (FCP)

Spatial: same as IR band (i.e., 2 km), Temporal: 1 hour

High-resolution Cloud Analy More detailed (HCAI)
Spatial: 0.02 X 0.02 deg., Telephone More detailed

Cloud Mask

Mixed

Cloud

Dense
St. Fog
Sc
Cu
Middle
Thin
upper
Cb
Clear

3. Recent improvements

Update Cloud Top Height algorithm

- since 0200 UTC on 21 March 2017
- To correct top height underestimation for optically thin clouds

Explanation: tomorrow presentation

4. Validation works

Products are routinely validated.

Checking the accuracy and its fluctuation

5. Future Plan

Improvement of current cloud products:

- 10-minite interval production
 - ✓ To speed up the running

Himawari-8 new products under construction:

- Fog monitoring (land and ocean, day and night)
- Snow/Ice surface detection
- Surface solar radiation
- Sunshine duration

Improvement of operational cloud products by Meteorological Satellite Center of Japan Meteorological Agency

Haruma Ishida*, Kouki Mouri, Hiroshi Suzue, Ryo Yoshida, Masahiro Hayashi

Meteorological Satellite Center (MSC), Japan Meteorological Agency (JMA)

2018 Oct.

1. Introduction

Two topics:

- Improvement of cloud top height in operational cloud products of Advanced Himawari Imager (AHI) by JMA/MSC
 - √ Point of algorithm change
 - √ Validation

- Investigation of the applicability and utility of machine-learning techniques for cloud product algorithm
 - ✓ especially cloud mask and type discrimination
 - ✓ A preliminary study for future operation

2. Improvement of Cloud top height

2-1. New Algorithm

Robs

Change from single cloud layer model to double layer

In the optimal estimation method:
$$\begin{array}{c|c} Tc1 \\ \varepsilon c1(11.2\mu m) \\ \beta c1(12.4,11.2) \\ Tc2 \\ \varepsilon c2(11.2\mu m) \\ \beta c2(12.4,11.2) \\ \end{array} \begin{array}{c|c} BT(11.2) - BT(12.4) \\ BT(11.2) - BT(13.3) \\ BT(11.2) - BT(8.6) \\ BT(6.2\mu m) \\ BT(7.3\mu m) \end{array}$$
 1st cloud layer
$$\begin{array}{c|c} \tau_{ac} \varepsilon_{c1} B(T_{c1}) \\ \tau_{ac} \varepsilon_{c1} B(T_{c1}) \\ \hline R_m (1 - \varepsilon_{c1}) \tau_{ac} \\ \hline Tc; \text{ cloud temp.} [K] \\ \varepsilon_c; \text{ cloud emissivity } [-] \\ \beta_c; \text{ ratio of cloud trans.} \end{array}$$

 $B(T_{srf})\varepsilon_{srf}\tau_b(1-\varepsilon_{c2})\tau_m(1-\varepsilon_{c1})\tau_{ac}$

Radiative transfer equation for Jacobian calculation:

$$= R_{\rm ac} + \tau_{\rm ac} \varepsilon_{\rm c1} B(T_{\rm c1}) + \tau_{\rm ac} (1 - \varepsilon_{\rm c1}) R_{\rm m} + \tau_{\rm ac} (1 - \varepsilon_{\rm c1}) \tau_{\rm m} \varepsilon_{\rm c2} B(T_{\rm c2})$$

$$- \frac{1}{2} \tau_{\rm pc} (1 - \varepsilon_{\rm c1}) \tau_{\rm m} (1 - \varepsilon_{\rm c2}) R_{\rm b} + \tau_{\rm ac} (1 - \varepsilon_{\rm c1}) \tau_{\rm m} (1 - \varepsilon_{\rm c2}) \tau_{\rm b} \varepsilon_{\rm srf} B(T_{\rm srf})$$
Cloud top height and pressure derived from temperature

2. Improvement of Cloud top height

2-2. Results

Comparison to CALIPSO:

Sep. 2016, full-disk area

reduce underestimation

Cloud top height from CALIPSO (m)

Underestimation reduced

2. Improvement of Cloud top height

2-3. Validation

Improved, but the difference from CALIPSO still remains

- 3-1. Difficulties of cloud (type) discrimination
- Cloud (type) discrimination involves own inherent difficulties:
- "subjectivity" of cloud (type)
 - ◆Cloud properties continuously varies
 - ◆ the boundary among them (e.g., clear/cloudy) intrinsically vague
 - > The cloud (type) definition (i.e., the criteria of "correct"): determined subjectively depending on purposes
 - No absolutely correct criteria of cloud (type)
- Incorrect discrimination: unavoidable
 - ◆A variety of conditions: difficult to consider all situations in advance of constructing a classifier (e.g., rare or local cases)
 - A classifier adjustment --- new incorrect results under other conditions!
 - > Trial and error --- a haphazard way

A difference from other general classification problems

3-2. Requirements for cloud discrimination methods

Clarify requirements to overcome the difficulties:

- 1. Procedure of appropriate training dataset preparation
 - No objectively labeled data
 - > To avoid a circular argument
- 2. To determine a reasonable classifier for each purpose
 - ◆ No absolutely correct criteria, i.e., subjectivity
- 3. To quantitatively estimate likelihood of cloud type
 - ◆ To treat the vagueness
- 4. To construct a practical adjustment procedure
 - ♦ to avoid the haphazard way

Besides,

- Save computer resource
- The generality to be applicable to various sensors/targets

Machine-learning incorporation: satisfying these requirements

3-3. Development: Flow of method

205, 390-407.

3-4. Development: Conceptual schematic

SVM learning with only typical data; reasonable classifier

3-4. Development: Conceptual schematic

SVM learning with only typical data; reasonable classifier

3-5. Example: Cloud mask

-10

2012/2/6, 9:30

The decision function: appropriate for a measure of likelihood

-10

SVM using all IR bands of AHI: reasonable discrimination

4. Conclusions

- AHI cloud product: the algorithm for cloud top height retrieval has been improved.
 - > Reduce under estimation in the previous version

- A way of incorporating machine-learning techniques into cloud (type) discrimination
 - > To overcome the own difficulties
 - > SVM: suitable and applicable
 - ✓ How about other techniques (e.g., Neural Networks)?

appendix

Fundamental Cloud Product: Cloud Mask

- ✓ Threshold tests for observed reflectance and brightness temperature (TBB)
- ✓ Referring to the NWC-SAF and GOES-R/ABI ATBDs
- ✓ Each threshold depends on the clear-sky reflectance/TBB
 Reflectance:
 - (Land) MODIS BRDF / Albedo product (MOD43)
 - (Sea) Cox and Munk, 1954
 - (Ice) Aoki et al., 1999, 2000(JGR)

TBB:

- RTTOV calculation on the cloud free condition

Tests	Primary parameters
Snow/sea ice detection	R1.6
Top temperature tests	T10.4
Top reflectance tests	R0.64, T3.9-T10.4
Top emissivity tests	T10.4-T8.6, T10.4-T3.9, T12.4-T3.9
Cloud absorption tests	T10.4-T12.4, T8.6-T10.4, T3.9-T10.4
Atmospheric absorption tests	T7.3-T10.4, T12.4-T10.4

✓ In addition, spatial/temporal uniformity tests are applied

Fundamental Cloud Product: Cloud Type/Phase

✓ Cloud Type

A cloudy pixel is categorized into "opaque", "semi-transparent" or "fractional"

✓ Cloud Phase

Cloud top phase (Water/Ice/Mixed) is determined based on observed TBB, reflectance and the

Cloud Type

Cloud Type determination scheme (daytime)

Cloud Phase discrimination scheme (daytime)

HCAI Cloud Type determination

For further information:

Fundamental Cloud Product: Cloud Top Height

- ✓ Combining three conventional methods
 - CO2 Slicing method (Menzel et al., 1982)
 - IRW/H2O Intercept Method (Schmetz et al., 1993)
 - Equivalent Black Body Temperature (EBBT) Method
- ✓ One method selected based on the cloud type

For further information:

2. Adjustment by adding training dataset

If a type of surface or cloud is usually incorrectly discriminated...

2. Adjustment by adding training dataset

If a type of surface or cloud is usually incorrectly discriminated...

3. Adjustment by adding training dataset

5. Effectivity of features

5-1. index; length of the projection of the normal vector

The length of the projection of the normal vector means the contribution of the feature to the classification

5. Effectivity of features

5-1. Feature selection

