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GEOSTATIONARY OZONE WITH GOES:
NOW AND IN THE FUTURE

Ozone is primarily viewed as a climate variable, and as a result the focus for ozone
detection has been polar orbiting satellites and ground stations. However, total column
ozone is correlated to potential vorticity and thus to the height of the tropopause and the
sensible weather at the surface; ozone can vary as rapidly as the weather. Ozone
features highlight jet streams and tropopause folds and may assist in the detection of clear
air turbulence. Tropopause folds can impact air quality at the surface and thus the air
quality community has an interest in monitoring ozone.

The GOES-R Air Quality Algorithm Working Group is funding work to produce an
Advanced Baseline Imager (ABI) total column ozone (TCO) algorithm and to determine the
best way to apply ABI ozone data to air quality issues. Instruments such as the current
GOES Sounder and GOES-R ABI are unable to resolve ozone to any useful accuracy in
the lower atmosphere (below roughly 300 hPa). Obtaining the tropospheric residual would
require ancillary data, though total column ozone data is also useful for model assimilation,
specifically as a source function for tropopause folds. Ancillary ozone data could include
data from satellites with ultra-violet sensors such as TOMS and OMI, allowing greater total
column accuracy and some ability to resolve atmospheric layers of ozone. To improve
accuracy the ABI ozone algorithm utilizes model temperature profiles to make up for the
lack of upper atmospheric temperature bands on ABI.

CREATING THE REGRESSION
COEFFICIENTS
The ABI TCO algorithm utilizes a regression based on that currently
used for the GOES Sounder. To generate the regression coefficients
for the TCO algorithm, >10,000 atmospheric temperature, moisture,
and ozone profiles (with associated total column ozone, location,
fraction of land at the location, and other information) located
between 70° N and 70° S were selected from a training dataset
consisting of NOAA88b profiles, radiosondes, ozonesondes,
ECMWF+SBUV data, and TIGR data. A forward model (PFAAST) is
used to generate brightness temperatures from selected bands,
including the 9.6 μm, aka the ozone band. Scattering by aerosols is
neglected. Satellite zenith angle is varied for each profile in 0.5°
steps from 0° to 80°. The result is 161 sets of coefficients to use to
solve for ozone in the regression equation shown below:
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Regression Terms
CNP Regression coefficients for NP predictors
ONS Total column ozone for NS sets of predictors from training dataset

PNP,NS
The training dataset, each location with its data is a column, 

NS/number of rows is the number of members of the training dataset
NS Number of members of the training dataset

NP Number of pieces of information for each member of the training 
dataset
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Regression Terms
Cx Regression coefficients (C0 is an offset)
n Number of bands used

Tb Brightness temperature
Ta Atmospheric temperature profile
ps Surface Pressure
Lp Fraction of land within pixel
M Month of year

LAT Latitude of pixel

Locations of profiles used to generate regression coefficients

CALCULATING TCO
Calculating the TCO is a simple vector multiplication
of the vector predictors and the vector of
predictands. In this particular algorithm, the result is
the natural logarithm of the TCO:

SURFACE EMISSIVITY IMPACTS ON TCO

Left: 1 UTC 1 August 2006, Right: 12 UTC 1 August 2006
The GOES Sounder TCO experimental product often shows a diurnal variation over
hot surfaces, and as expected this behavior is observed in SEVIRI TCO data as well.
Label A shows how the hot, reflective surface of southern Spain effectively enhances
a pre-existing streamer. Similar behavior is seen over the Sahara at label B. Further
research is necessary to isolate which band(s) may be responsible for this and how it
may be corrected.

Number of 
co-locations

Accuracy (DU)
(req: 15 DU)

Precision (DU)
(req: 25 DU)

RMSE (DU)

August 2006; February 1-14 and April 1-10, 
2007 (all clear-sky pixels) 5,796,726 3.3 14.8 15.1

August 2006; February 1-14 and April 1-10, 
2007 (non-desert land) 1,862,589 3.3 14.4 14.7

August 2006; February 1-14 and April 1-10, 
2007 (desert) 1,177,329 14.8 12.9 19.6

August 2006; February 1-14 and April 1-10, 
2007 (water) 2,756,808 1.5 13.1 13.1

August 2006 (all clear-sky pixels) 3,408,432 6.5 13.3 15.8

August 2006 (desert only) 681,994 18.3 11.9 17.4

August 2006 (non-desert land) 1,124,385 6.5 12.5 14.1

August 2006 (water only) 1,602,053 1.4 11.1 11.2

April 2007 (all clear-sky pixels) 1,052,090 1.2 15.4 15.4

Validaton of SEVIRI TCO using OMI TCO as truth is accomplished by remapping the clear-
sky SEVIRI TCO to the OMI footprints and generating statistics, including accuracy,
precision, and root mean squared error. The definitions of accuracy and precision are those
adopted for GOES-R algorithm work. Accuracy is the absolute value of the bias, and
precision is equivalent to one standard deviation.

Under most scenarios and surface types the algorithm meets its requirements, with the
exception of over desert surfaces. Deserts and other surfaces with very high emissivities
are a challenge for the regression and are a subject of further research.

A comparison of TCO from SEVIRI and OMI is presented below. The images were
remapped to the OMI footprints and a cloud mask was applied.

VALIDATION AGAINST THE OZONE MAPPING INSTRUMENT (OMI) ON AURA

The table above lists the accuracy and precision values for various dates and surface
types for Met-8 SEVIRI TCO as compared to OMI. Deserts provide the greatest
challenge for the regression, whereas water pixels provide some of the best results.
Water does not have a strong diurnal heating signature like deserts do, causing the
TCO results to be more stable there. Green highlights the results that show the
algorithm meets its specifications.

These scatterplots are divided up by
ecosystem and illustrate the general
similarities and differences in TCO
performance over the various
surface regimes. The scatterplot for
deserts shows the tendency for
SEVIRI to over-estimate TCO, for
example.

Realtime GOES ozone
on the web:


