

GEOCAT MANUAL

Geocat Version 0.5

geocat_manual.doc
Revised 2007-12-16

Graeme Martin
graemem@ssec.wisc.edu

Introduction

The Geostationary Cloud Algorithm Testbed (Geocat) was initially developed by
the GOES-R Algorithm Working Group (AWG) Cloud Application Team to serve as
a flexible cloud retrieval algorithm development tool. Since its inception
Geocat’s capabilities have grown such that all sorts of algorithms (fire detection,
soundings, aerosol, etc.) can be accommodated. Geocat provides a convenient
interface to measured radiances, ancillary data (NWP profiles, surface emissivity,
surface type, snow, etc.), fast model generated clear sky radiance profiles, and
measured and/or generated data from previous image time steps. Geocat also
provides a common algorithm output structure, whose definition is transparent
to the algorithm developer. Geocat is currently capable of processing GOES
(current generation), MSG, MTSAT, or simulated GOES-R ABI data.

Geocat is distributed as source code and typically built per-user in the home
directory. Ancillary and input data can be shared among users. The user can
select which science algorithms will be incorporated into a given build of
Geocat, and can then select which algorithms to run in a given program
invocation. This design is intended to facilitate rapid algorithm development
and to allow easy comparison of output from different algorithms or different
versions of the same algorithm. Geocat’s memory footprint can be manipulated
at program invocation by specifying the segment size, i.e. the number of image
lines to process at a time.

Adding an Algorithm to Geocat

This set of instructions assumes you have installed and successfully tested
Geocat by following the installation instructions. The ‘Geocat’ directory referred
to throughout this document is the installation directory. In the Geocat directory
there is a subdirectory called ‘src’ that contains the core Geocat source files.
You should not modify the files in this directory. To add an algorithm to Geocat,
you will run a script that will create a new directory (the ‘algorithm’ directory)
containing a Fortran module source file and an XML file that describes the
algorithm to Geocat. After you have successfully compiled and run the ‘stub’
algorithm, you will be able to modify the Fortran file and the XML file.

Generate a ‘stub’ module and XML algorithm description file

Choose a directory name, algorithm name, keyword, module name and main
subroutine name for your algorithm, as described below. Any of these values
can be changed later.

Table 1: create_module.sh arguments
directory name of the directory to be created to hold source files for this

algorithm and any related algorithms, e.g. clouds
algorithm unique long name for your algorithm in quotes, e.g. ‘Baseline

GOES IM Cloud Mask’
keyword unique keyword for your algorithm that will be used as a prefix

for output variables, e.g. baseline_cmask_goes_im
module the name of the Fortran module (also the source filename will be

module.f90), e.g. baseline_cloud_mask
subroutine the name of the main (entry) subroutine in the Fortran module,

e.g. baseline_cloud_mask_main

In your main Geocat directory, type:

 ./create_module.sh directory algorithm keyword module
subroutine

The script will create the specified directory with the files algorithm_list.xml and
module.f90, where module is the value you specified.

Generate and compile the source

1) In your main Geocat directory, run the python script to generate the source
files 'algorithm_mod.f90' and 'algorithm_module_names.f90', and the makefile.

 python algomodgen.py directory

where ‘directory’ is the name of the directory containing your algorithm. The
generated files will be located in the directory ‘src’.

2) In the directory 'src', build the application in debug mode. On a 32-bit
machine, type:

 make intel32

 On other machines, type:

 make intel

The Intel Fortran compiler is currently the only compiler that is known to work.
If successful, an executable named ‘geocat’ will have been created in your main
Geocat directory.

Run the algorithm in Geocat

1) Run Geocat with the ‘-alist’ option to print algorithm information:

 ./geocat -alist

The output should list a single algorithm with index ‘1’ and the name you
specified earlier.

2) Test the stub algorithm by processing a MET-8 file from the data package,
reading pre-computed navigation information from a file:

 ./geocat -a 1 -verbose -read_nav -f
met08_disk_1_2006_213_1200.area.gz -time_report

or

./geocat -akey algorithm_keyword -verbose -read_nav –f
met08_disk_1_2006_213_1200.area.gz -time_report

If successful, there will be a file called ‘geocatL2.Meteosat-
8.2006213.120000.hdf’ in the directory ‘l2_output’ that contains navigation and
ecosystem data.

In the second example above, ‘algorithm_keyword’ is the keyword that you
specified when you invoked created_module.sh. Although the two invocations
are equivalent, In practice it is best to use the ‘–akey’ option instead of ‘–a’ since
the algorithm index is auto-generated by the python script algomodgen.py, and
may change when other algorithms are added. The keyword will not change
unless the user changes it in the XML file.

Now that you have successfully created a new algorithm module, you can add
algorithm-specific source code to the module file and modify the XML to
describe the inputs and outputs required by your algorithm.

The XML Algorithm Description File

Each algorithm directory must contain an XML file that describes the algorithm
and defines the interface between the algorithm module and Geocat. It is used
to generate Fortran source code that is then compiled into the Geocat
executable. Any optional data requirements are specified in the XML file (cloud
mask, NWP, RTM, etc.), as well as any required output or scratch variables. The
file must be named ‘algorithm_list.xml’.

Whenever the XML file is modified, the algorithm interface source files and
makefile must be re-generated and Geocat must be recompiled, as described in
the section “Building Geocat”.

The basic format of the XML file is shown in Figure 1 in the Appendix. An
example XML file from the cloud mask algorithm is shown in Figure 2 in the
Appendix.

The ‘algorithm’ XML element describes a single algorithm; if there are multiple
algorithm modules in the same directory, each is represented by a single
algorithm element in the XML file. Just keep in mind that no two algorithms can
have the same algorithm keyword. The python script will warn you if it
encounters multiple instances of any of those parameters.

It is important to note that multiple algorithm directories can be included in a
single build of Geocat by specifying multiple directory arguments to the python
script (see the section “Building Geocat”).

Informational tags and attributes

The ‘algorithm’ element contains the informational tags and attributes shown
below. The values that have not been set by the ‘create_module.sh’ script
should be assigned meaningful values (see Table 2).

<algorithm name="name" keyword="keyword”>
 <comment value="fortran header comment" />
 <module value="geocat_module_name" />
 <function value="geocat_function_name" />
 <reference value="reference" />
 <ancil_subdir value="ancil_subdir" />

Table 2: XML algorithm description file -- algorithm element
tag attribute description
algorithm name unique long name for the algorithm.
algorithm keyword unique short name for the algorithm, used as a

prefix for algorithm-specific variables written
to the output file

comment value (optional) string that describes the algorithm
version value (optional) algorithm version number
module value name of the Fortran module that will contain

the algorithm (also used in name of source file)
function value name of the entry subroutine for your

algorithm to be called by Geocat
reference value a string describing the origins of the algorithm

science (e.g. Johnson et al., 2005)
ancil_subdir value name of the directory that will contain ancillary

data for the algorithm, located in
‘data/algorithms’

inactive (optional) if present, the algorithm will not be
compiled into Geocat

cmask_needed (optional) if present, indicates cloud mask is
required by the algorithm

ctype_needed (optional) if present, indicates cloud type is
required by the algorithm

cldz_needed (optional) if present, indicates cloud top height
is required by the algorithm

amask_needed (optional) if present, indicates aerosol mask is
required by the algorithm (experimental)

nwp_needed (optional) if present, indicates NWP data is
required by the algorithm

rtm_needed (optional) if present, indicates RTM data is
required by the algorithm

active_needed (optional) if present, indicates active sensor
data is required by the algorithm
(experimental)

sds_list list of sds_item elements specifying the Geocat
output and scratch variables that will be used
by the algorithm (see sds_item description in
Table 3)

channels values comma separated list of Geocat channels used
by the algorithm (see Geocat / instrument
channel mappings in Table 4)

Specifying input data

If the tags “rtm_needed” and “nwp_needed” are included in the XML file, Geocat
will make RTM and NWP data available as input to the algorithm.

The tags “cmask_needed”, “ctype_needed” and “cldz_needed” indicate that the
inputs cloud mask, cloud type and cloud height, respectively, are required by
the algorithm. If one of these tags is present, the user must specify a default
cloud mask, cloud type or cloud height algorithm at program invocation, either
with the command line option “-cmask”, “-ctype” or “-cldz”, or in the file
“geocat.default”. See the section “Running Geocat” for more information. Since
Geocat is not distributed with any cloud algorithms, the user is responsible for
either writing an algorithm that produces the required product, or obtaining a

version from the clouds team (Contact Andrew Heidinger,
heidinger@ssec.wisc.edu, or Mike Pavolonis, mpav@ssec.wisc.edu)

Level 1B calibrated and navigated data and ancillary data are provided
automatically as input to the algorithm and do not need to be specified in the
XML file.

Specifying input channels

The channels element contains a comma-separated list of input channels
required by the algorithm:

<channels values="comma,separated,list,of,channels" />

In order to use channel-specific input variables, the channel must be specified
here. For example, if an algorithm requires ref2 (calibrated channel 2
reflectance), the channels list must contain the number ‘2’.

Specifying output and scratch variables

Geocat can write data produced by algorithms at pixel resolution to a Level 2
output file. Any output variable that is required by an algorithm must be
specified in the XML file by an ‘sds_item’ in the ‘sds_list’ element. Memory will
only be allocated for the variables in this list. Table 17 contains a list of product-
specific output variables that are available to algorithms at pixel resolution.

The format of the ‘sds_item’ is shown below.

 <sds_item name="sds_name">

 <dim3_size value="dimen3_size" /> (optional)
<stride_factor value="stride_factor" /> (optional)

 <produces_output /> (optional)
 </sds_item>

The attribute ‘sds_name’ is the name of the variable, e.g. ‘fire_mask’. If the
variable is 3-dimensional, the size of the third dimension is specified by
‘dimen3_size’. The xy stride factor can be specified with ‘stride_factor’. The
variable will only be written to the output file if the ‘produces_output’ tag is
present; if this tag is not present the variable can still be used as a scratch space
at pixel resolution.

Most of the variables listed in Table 17 are associated with a specific product,
but there are several generic variables that are available for scratch space and
debugging, with names like ‘i1_generic1’ and ‘r4_generic1’.

Table 3: XML algorithm description file -- sds_item element
tag attribute description
sds_item name name of Geocat output variable
dim3_size value (optional) positive integer, specifies the 3rd

dimension, for 3-dimensional variables only
stride_factor value (optional) positive integer, specifies the xy

stride factor (warning: this feature is
experimental!)

produces_output (optional) if present, data will be written to
the Level 2 output file

Modifying the algorithm source code

The algorithm source code is contained in a Fortran file called ‘module.f90’
located in the algorithm directory, where ‘module’ is the case-sensitive value
specified in the XML algorithm file.

The Geocat processing model

Geocat operates on chunks of data called segments, specified at runtime as a
fixed number of image lines. A single segment is read in, processed, and output
is written to file before the next segment is read in. The memory footprint of
Geocat can be controlled by changing the segment size, either at the command
line or in the file ‘geocat.default’.

The main algorithm subroutine is invoked once per segment, after calibration,
navigation and any user-specified optional processing like NWP or RTM
calculation. Typically an algorithm loops through the lines and elements in the
current segment, processing a single pixel at a time. An algorithm should never
assume fixed-size data arrays, because segment size is not known until
runtime, and the last segment is typically smaller than the others. The number
of elements and lines in the current segment are available in the variables
‘sat%nx’ and ‘sat%ny’. These variables represent the upper limit on indices into
input and output arrays that are at pixel-resolution.

If an algorithm encounters bad data or other error conditions, it should not
terminate the application by calling a “stop” statement or by any other means.
Preferably the algorithm will set an error flag or display an error message. This
is to ensure robustness when applications are being run together and to avoid
the undesirable condition that “bad” data as determined by an algorithm can
terminate the entire program.

A limitation of the segment processing model as currently implemented is that
only pixels in the same segment can be used to perform spatially dependent
calculations, e.g. spatial uniformity. A future version will allow for user-
controlled scan line segment overlap.

The algorithm module source file

The ‘stub’ algorithm implementation that is generated by the script
‘create_module.sh’ contains a Fortran module with a single subroutine and
placeholder comments indicating where blocks of code belong. Once you have
successfully compiled and tested the stub algorithm, you can edit the source file
to integrate actual algorithm code.

Module-level declarations

Declarations at the module level (those that occur before the ‘contains’
statement) are scoped to the entire module. For example, a variable declared at
the module-level can be used in the subroutines and functions in the module.

Preferably variables and constants should be declared using the named constant
‘kind’ parameters defined in ‘constant.f90’ (e.g. ‘real4’) rather than explicitly
stating the precision. This enforces consistency of precision throughout the
program, and allows the precision to be changed by modifying a single line,
thus improving portability.

 INTEGER (kind=int4) :: sfc_level

The statement ‘use ALGORITHM_MODULE_USAGE’ allows access to Geocat input
and output structs and utility procedures throughout the module.

Main subroutine

The main subroutine is called by Geocat and must have a single input-type
argument, the Geocat algorithm index, which is used to index into the output
struct. The suggested structure of the main subroutine is:

- declaration section
- pre-processing steps
- the main per-pixel processing loop: for each pixel, do something
- post-processing steps

The generated code includes a per-pixel loop. Within the loop, input data for
the current pixel can be accessed with the line and element indices as in the
example below:

 if (sat%space_mask(ielem,iline) == sym%SPACE) then
 cycle
 endif

NOTE: The code snippet above checks whether the current pixel is a ‘space’
pixel, as determined by Geocat, and if so, skips to the next loop iteration. This
is important because in order to save processing time Geocat does not provide
algorithm input for space pixels. This means that if the current pixel is flagged
as a space pixel in the space_mask array (e.g. the pixel is not geolocated on the
earth or it has a viewing angle greater than the maximum allowable viewing
angle defined by the user at run time), none of the input values are valid. So it is
very important to perform this check before processing a pixel.

Within the pixel loop, you can access data from other pixels in the segment
(spatial dependence), but be careful not to index outside the bounds of the
arrays that hold data for the current segment. The number of lines and
elements in the current segment are available in the ‘sat’ struct variables ‘ny’
and ‘nx’:

 if ((ielem + 1) <= sat%nx) then

 if (sat%space_mask(ielem+1,iline) == sym%SPACE) then
 write (*,*) ‘living on the edge’
 endif
 endif

Accessing input data

Channel-specific input data (e.g. channel 2 reflectance) is only available if the
channel has been specified in the XML algorithm description file. Similarly,
availability of NWP and RTM data is controlled with the flags ‘nwp_needed’ and
‘rtm_needed’ in the XML description file. See Table 2 for more information.

The ‘sat’ structure contains navigation information, level 1b data, level 2 clouds
and aerosol data, ancillary data, RTM top-of-atmosphere clear sky radiance and
brightness temperature data at pixel resolution, information about the program
invocation and the current segment, and general utility information.
Descriptions of the variables in the ‘sat’ structure, including types, sizes and
units, are in Table 5, Table 6, Table 7, Table 8, Table 9, Table 10 and Table 11.
Variables with dimensions (Nx, Ny) are at pixel resolution, where ‘Nx’ is the
number of elements in the segment and ‘Ny’ is the number of lines.

The ‘nwp’ structure contains NWP data from the input source specified (either
GDAS or GFS at this point). The native spatial resolution is 0.5 or 1.0 degrees,
and the time resolution is 6 hours. The vertical profile variables are interpolated
to the standard 101 AIRS levels.

Descriptions of the variables in the ‘nwp’ structure are in Table 12 and Table 13.
The ‘dat’ member is a 2-dimensional array at the NWP spatial resolution, where
each element of the array is itself a structure containing NWP data. Conversion
between pixel resolution and NWP resolution is accomplished by retrieving the
NWP array indices for a given pixel from the ‘sat’ structure:

xnwp = sat%x_nwp(ielem,iline)
 ynwp = sat%y_nwp(ielem,iline)
 tpw = nwp%dat(xnwp, ynwp)%tpw

Some of the variables in the ‘dat’ structure are arrays with dimension ‘Nprof’,
corresponding to the number of profiles, which is available in the variable
‘nwp%nlevels’.

 plev = nwp%dat(xnwp, ynwp)%plev(some_level)

In case you are wondering, the NWP structure is set up in this manner so that
memory allocation for the 101-level profiles can be easily controlled.

The ‘rtm’ array contains RTM data at the NWP spatial resolution (generated by
the default RTM solver, PFAST at this point). Conversion between pixel
resolution and NWP resolution is accomplished as described in the ‘nwp’

structure section. Each element of the ‘rtm’ array is a structure that contains an
array named ‘d’. Each element of ‘d’ corresponds to a different viewing zenith
angle bin. The index into ‘d’ for a given pixel is obtained from the ‘ivza’ variable
in the ‘sat’ structure as shown below. Each element of ‘d’ is a structure that
contains RTM data, described in Table 14.

xnwp = sat%x_nwp(ielem,iline)
 ynwp = sat%y_nwp(ielem,iline)
 ivza = sat%ivza(ielem,iline)
 bt_clr7 = rtm(xnwp,ynwp)%d(ivza)%bt_clr7

Some of the variables in the ‘d’ structure are arrays with dimension ‘Nprof’,
corresponding to the number of profiles, which is available in the variable
‘nwp%nlevels’. Note that the ‘rtm’ structure array cannot contain data without
the ‘nwp’ structure containing data. Geocat will check to make sure that if the
rtm_needed tag is set, the nwp_needed tag is also set. The ‘nwp’ structure can
exist without the ‘rtm’ structure, however. An example reference to a rtm
profile variable is shown below.

cld_prof10 = rtm(xnwp,ynwp)%d(ivza)%cld_prof10(some_level)

Note that some RTM data (top of atmosphere clear sky radiances and brightness
temperatures) is available at pixel resolution in the ‘sat’ structure.

In addition to the structures described above, which contain primarily data,
some other input structures are available to the algorithm modules:

The ‘TIMEstr’ structure contains the time of the current image (see Table 15).

The ‘AREAstr’ structure contains the AREA directory of the input file. See the
definition of ‘area_struct’ in the source file ‘area_read.f90’.

Accessing other Geocat data

The ‘sym’ structure contains symbols used throughout Geocat including mask
codes and error codes. See the source file ‘constant.f90’ for a list of available
symbols.

The variable ‘scinfo’ is an array of ‘sc_params’ structures containing
information about the satellite platforms supported by Geocat. The index of the
satellite platform of the current image is stored in the variable ‘sc_ind’. Thus the
‘sc_params’ structure for the current image is accessed as ‘scinfo(sc_ind)’. See
the definition of ‘sc_params’ in the source file ‘pixel_common.f90’.

Some fundamental physical constants are available to algorithms via Geocat.
See the file ‘fundamental_constants_geocat.f90’ for their definitions.

Writing output data

Output is written to the Level 2 file via the ‘out2’ array of structures. Each
element in the ‘out2’ array corresponds to a different algorithm. Access the
correct array element with the variable ‘ialgo’:

 out2(ialgo)%firemask(ielem, iline) = 60

Memory is allocated only for variables in the ‘out2’ structure that are specified
in the XML algorithm description file (see Table 3). Therefore, any ‘out2’ variable
that is used in an algorithm module must be specified in the XML file. If the tag
‘produces_output’ is included in the XML specification, Geocat will write the
output to the Level 2 file. If the tag is not present, no output will be written, but
the variable can still be used for scratch space.

See Table 16 and Table 17 for a description of the variables in the ‘out2’
structure. Most of the variables are product-specific, but there are also some
generic variables available for scratch and debug output, with names like
‘i2_generic1’.

Pointers and convenience aliasing

To simplify per-pixel data access syntax and potentially avoid bugs, you can set
a pointer to point to the current array element, and thereafter use the pointer
variable instead of indexing into the array. For example, declare the pointer like
this:

INTEGER(kind=int1), pointer :: firemask

and set the pointer in the main pixel loop:

firemask => out2(ialgo)%firemask(ielem, iline)

Later you can read or write directly to the pointer variable:

firemask = 60

Utility functions and subroutines

Geocat utility functions and subroutines that are callable from the algorithm
modules are listed in Table 18.

Building Geocat

If an algorithm description XML file has been modified since the last compile,
the python script must be run to re-generate the algorithm interface source files
and makefile, then the source must be recompiled. The arguments to the
python script determine which algorithms are included in a given build. The
calling syntax is:

python algomodgen.py directory_1 [directory_2……directory_N]

where each of the specified directories contains an XML file that describes the
algorithms in that directory. The algorithm indices will be assigned in the order
the algorithms are processed, i.e. in the order the directories are specified, and
within each directory in the order algorithms are specified in the XML file.

To build Geocat, in the main Geocat source directory (‘src’), type:

 make target

where ‘target’ is one of the following:

intel32 32-bit Intel architectures, debug
intel32_opt 32-bit Intel architectures, optimized
intel 64-bit Intel architectures, debug
intel_opt 64-bit Intel architectures, optimized

It is recommended that the debug targets are used during algorithm
development; optimized builds can be used later for data processing and
performance testing.

Running Geocat

Command line options

Command line options control input and output files and locations, and
program execution. To see a list of available command line options and their
descriptions, run Geocat with the ‘-h’ option:

 ./geocat –h

The file ‘geocat.default’, located in the Geocat directory, provides an alternate
method of specifying file locations and some other options. The file can be
edited directly, and will be read in by Geocat at runtime. Command line options
take precedence over default values. The file ‘geocat.default.template’ contains
a description of each line in the file ‘geocat.default’.

Informational options

-alist
 List information about each available algorithm and exit.

-help
-h
 List all available command line options and exit.

-pblock

Output a summary of the directory, navigation, and calibration block and exit.
Used with option ‘-f’.

-scinfo
 Output information on available satellite platforms and exit.

-version
–v
 Display the code version number and exit.

Input options

Geocat reads Level 0 input from band-separated AREA files, specified with the ‘-
f’ option and located in the directory specified by the ‘-area_dir’ option. Input
AREA files can optionally be compressed with gzip (‘.gz’ appended to filename).
Geocat extracts the channel number from the filename, as determined by the ‘-
aformat’ specification.

Because navigation calculations are expensive, processing times can be
substantially reduced when reprocessing the same input file or when working
with geostationary satellite data by writing navigation data to file with the ‘-

dumpnav’ option, and reading it in with the ‘-read_nav’ option in subsequent
program invocations. If navigation data is not available for the current Level 0
file, the ‘-read_nav’ option will be ignored.

-active_dir directory
 Specify the directory where all active sensor data are located (experimental).

-aformat char_occur1 char

Specify the location of the channel number in the AREA filename. By default
the channel number is located between the second and third underscore
(arguments ‘2 _’) .

-area_dir directory
 Specify the location of the input AREA files.

-f filename

Specify an input AREA file to process. Can be specified multiple times to
process multiple files.

-nav_dir directory
 Specify the directory where the navigation output file(s) are located.

-nwp {gfs, ncep, ecmwf}
 Specify the NWP data source.

-nwp_dir directory
 Specify the directory where the NWP file(s) are located.

-read_nav
 Set this flag if imager navigation is to be read from file.

-snow_dir directory
 Specify the directory where the 4-km snow map(s) are located.

Output options

Level 1, Level 2 and RTM output files are written to locations specified by the
options below. Level 1 and RTM data will only be written if channels are
specified with the ‘-dumpch’ and ‘-dumprtm’ options. Level 2 output is turned
on and of with the ‘-l2’ and ‘-nol2’ options.

-dumpch channel [channel] ...
 Specify which channels are to be dumped to a Level 1 file.

-dumpnav
 Set this flag to create a navigation file.

-dumprtm channel [channel] ...
 Specify which channels are to be dumped to a RTM file.

-l1_dir directory
 Specify the directory where the Level 1 output file(s) are to be written.

-l2
 Set this flag to create Level 2 data.

-l2_dir directory
 Specify the directory where the Level 2 output file(s) are to be written.

-nav_dir directory
 Specify the directory where the navigation output file(s) are located.

-nol2
 Set this flag to not create Level 2 data.

-rtm {plod, crtm}
 Specify the fast radiative transfer model to use.

-rtm_dir directory
 Specify the directory where the RTM output file(s) are to be written.

Processing options

Specify the algorithms to run by index with the ‘-a’ option. Algorithms will be
processed in the order they are specified.

-a alg_index [alg_index] ...

Specify which algorithms are executed by index (see -alist to list algorithm
indices). Indices are auto-assigned and likely to change across program
builds. Consider using option -akey as a more robust alternative.

-akey keyword [keyword] ...

Specify which algorithms are executed by keyword (see -alist to list algorithm
keywords).

-amask keyword

Specify the default aerosol mask algorithm, by keyword (experimental, see –
alist to list algorithm keywords).

-cldz keyword
Specify the default cloud height algorithm, by keyword (see –alist to list
algorithm keywords).

-cmask keyword

Specify the default cloud mask algorithm, by keyword (see –alist to list
algorithm keywords).

-ctype keyword

Specify the default cloud type algorithm, by keyword (see –alist to list
algorithm keywords).

-fast_planck
Set this flag to indicate Planck Function look-up tables are to be used when
converting measured radiances to brightness temperature.

-maxsatzen angle_in_degrees

Set the maximum viewing angle to be considered valid. Pixels with a viewing
angle greater than the value specified will not be calibrated and navigated by
Geocat, and will be flagged as space pixels in the space mask.

-nscans nscans_per_cycle
 Set the segment size (the number of scans to process per calling cycle).

-use_albedo
 Set if the MODIS surface albedo database is to be used.

-use_seebor
 Set if the Seebor surface emissivity database is to be used.

-use_snow
 Set if the 4-km snow maps are available to be used.

-x xstart xend xstride

Specify the first and last elements to be processed along with the interval
between values in the x or element dimension.

-y xstart xend
 Specify the first and last lines to be processed in the y or line dimension.

Standard output options

-time_report
 Output the total amount of time each algorithm took to process.

-verbose
 Output detailed processing information to the standard output device.

APPENDIX

Figure 1: XML algorithm description file format
<geocat>
 <algorithms>

<algorithm name="name" keyword="keyword" index="idx">
 <comment value="fortran header comment" />
 <module value="geocat_module_name" />
 <function value="geocat_function_name" />
 <reference value="reference" />
 <ancil_subdir value="ancil_subdir" />

 <inactive /> (optional)

 <cmask_needed /> (optional)
 <ctype_needed /> (optional)

<cldz_needed /> (optional)
 <amask_needed /> (optional)
 <nwp_needed /> (optional)
 <rtm_needed /> (optional)
 <active_needed /> (optional)

 <sds_list>
 <sds_item name="sds_name">

 <dim3_size value="dimen3_size" /> (optional)
<stride_factor value="stride_factor" />
 (optional)

 <produces_output /> (optional)
 </sds_item>

 </sds_list>

 <channels values="comma,separated,list,of,channels" />

</algorithm>
</algorithms>

</geocat>

Figure 2: XML algorithm description file -- an example algorithm element from the
cloud mask algorithm
<algorithm name="Baseline SEVIRI Cloud Mask" keyword="baseline_cmask_seviri"
index="1">
 <comment value="Baseline GOES-R CAT ABI Cloud Mask for SEVIRI" />
 <module value="baseline_cloud_mask" />
 <function value="baseline_cloud_mask_main" />
 <reference value="GOES-R AWG Cloud Team" />
 <ancil_subdir value="baseline_cloud_mask" />

 <nwp_needed />
 <rtm_needed />

 <sds_list>
 <sds_item name="cloud_mask">
 <produces_output />
 </sds_item>
 <sds_item name="cloud_mask_packed">
 <dim3_size value="4" />
 <produces_output />
 </sds_item>
 <sds_item name="quality_flags1">
 <dim3_size value="24" />
 </sds_item>
 <sds_item name="r4_generic1">
 <produces_output />
 </sds_item>
 <sds_item name="r4_generic2">
 <produces_output />
 </sds_item>
 <sds_item name="i1_generic1">
 </sds_item>
 </sds_list>

 <channels values="2,7,14,15" />
</algorithm>

Table 4: Geocat / instrument channel mappings
GEOCAT
Channel

GOES I-M
Channel

GOES N-P
Channel

MSG
Channel

MTSAT
Channel

ABI Channel

1 1
2 1 1 1 1 2
3 2 3
4 4
5 3 5
6 6
7 2 2 4 5 7
8 5 8
9 3 3 4 9
10 6 10
11 7 11
12 8 12
13 13
14 4 4 9 2 14
15 5 10 3 15
16 6 11 16

Table 5: ‘sat’ structure -- GEOCAT setup information
variable name data type/size units description
ancil_path string none The main ancillary data directory
iseg Int32 none The index of the current scan line segment (zero-based)
nscans_per_segment Int32 none The number of scan lines per segment
nseg Int32 none The total number of scan line segments

nx Int32 none The number of pixel elements currently in memory
nx0 Int32 none The number of pixel elements prior to subsampling
ny Int32 none The number of scan lines currently in memory
ny_all Int32 none The total number of scan lines prior to parsing into scan line segments

and prior to subsampling
ny0 Int32 none The number of scan lines prior to subsampling. Not currently active.
sfc_albedo_source Int8 none The surface reflectance data source (see sym structure)
sfc_emiss_source Int8 none The surface emissivity data source (see sym structure)
snow_mask_source Int8 none The snow mask data source (see sym structure)
xstart Int32 none The starting pixel element index
xstride Int32 none The subsampling factor in the pixel element direction (1: every pixel, 2:

every other pixel, etc…)
ystart Int32 none The starting scan line index
ystride Int32 none The subsampling factor in the scan line direction (1: every line, 2: every

other line, etc…). Not currently active.

Table 6: ‘sat’ structure -- navigation-related data
variable name data type/size units description
cos_satzen Float32(Nx, Ny) none Cosine of the satellite zenith angle
cos_solzen Float32(Nx, Ny) none Cosine of the solar zenith angle
glintzen Float32(Nx, Ny) degrees Glint angle
lat Float32(Nx, Ny) degrees Pixel latitude
lon Float32(Nx, Ny) degrees Pixel longitude
relaz Float32(Nx, Ny) degrees Relative azimuth
sataz Float32(Nx, Ny) degrees Satellite azimuth
satzen Float32(Nx, Ny) degrees Satellite zenith angle
scatzen Float32(Nx, Ny) degrees Scattering angle
solaz Float32(Nx, Ny) degrees Solar azimuth
solzen Float32(Nx, Ny) degrees Solar zenith angle
sp_lat Float32 degrees Sub-satellite latitude
sp_lon Float32 degrees Sub-satellite longitude
space_mask Int8(Nx, Ny) none Indicates whether a pixel is geolocated on the earth’s surface (NO: pixel

is geolocated, YES: pixel is not geolocated)
sun_earth_distance Float32 AU The sun earth distance
x_nwp Int32(Nx, Ny) none The corresponding NWP grid cell index for each satellite pixel for the

x-direction
y_nwp Int32(Nx, Ny) none The corresponding NWP grid cell index for each satellite pixel for the

y-direction

Table 7: ‘sat’ structure -- Level 1B calibrated & navigated data
variable name data type/size units description
bad_pixel_mask Int8(Nchan+1, Nx, Ny) none Basic indicator of spectral data quality (NO: data is within

expected range, YES: data is outside of spectral range) for each
possible spectral channel. The nchan+1 index is set to YES if
any of the individual channels had out of range data values for a
given pixel.

bt10 Float32(Nx, Ny) K Calibrated channel 10 brightness temperature
bt11 Float32(Nx, Ny) K Calibrated channel 11 brightness temperature
bt12 Float32(Nx, Ny) K Calibrated channel 12 brightness temperature
bt13 Float32(Nx, Ny) K Calibrated channel 13 brightness temperature
bt14 Float32(Nx, Ny) K Calibrated channel 14 brightness temperature
bt15 Float32(Nx, Ny) K Calibrated channel 15 brightness temperature
bt16 Float32(Nx, Ny) K Calibrated channel 16 brightness temperature
bt7 Float32(Nx, Ny) K Calibrated channel 7 brightness temperature
bt8 Float32(Nx, Ny) K Calibrated channel 8 brightness temperature
bt9 Float32(Nx, Ny) K Calibrated channel 9 brightness temperature
ems7 Float32(Nx, Ny) none Calibrated channel 7 pseudo-emissivity
rad10 Float32(Nx, Ny) mWm-

2sr-

1(cm-1)-1

Calibrated channel 10 radiance

rad11 Float32(Nx, Ny) mWm-

2sr-
Calibrated channel 11 radiance

1(cm-1)-1
rad12 Float32(Nx, Ny) mWm-

2sr-

1(cm-1)-1

Calibrated channel 12 radiance

rad13 Float32(Nx, Ny) mWm-

2sr-

1(cm-1)-1

Calibrated channel 13 radiance

rad14 Float32(Nx, Ny) mWm-

2sr-

1(cm-1)-1

Calibrated channel 14 radiance

rad15 Float32(Nx, Ny) mWm-

2sr-

1(cm-1)-1

Calibrated channel 15 radiance

rad16 Float32(Nx, Ny) mWm-

2sr-

1(cm-1)-1

Calibrated channel 16 radiance

rad7 Float32(Nx, Ny) mWm-

2sr-

1(cm-1)-1

Calibrated channel 7 radiance

rad8 Float32(Nx, Ny) mWm-

2sr-

1(cm-1)-1

Calibrated channel 8 radiance

rad9 Float32(Nx, Ny) mWm-

2sr-

1(cm-1)-1

Calibrated channel 9 radiance

ref1 Float32(Nx, Ny) % Calibrated channel 1 reflectance (solar zenith angle corrected)
ref2 Float32(Nx, Ny) % Calibrated channel 2 reflectance (solar zenith angle corrected)
ref3 Float32(Nx, Ny) % Calibrated channel 3 reflectance (solar zenith angle corrected)
ref4 Float32(Nx, Ny) % Calibrated channel 4 reflectance (solar zenith angle corrected)
ref5 Float32(Nx, Ny) % Calibrated channel 5 reflectance (solar zenith angle corrected)
ref6 Float32(Nx, Ny) % Calibrated channel 6 reflectance (solar zenith angle corrected)
ref7 Float32(Nx, Ny) % Calibrated channel 7 pseudo-reflectance (solar zenith angle

corrected)

Table 8: ‘sat’ structure -- ancillary data
variable name data type/size units description
coast_mask Int8(Nx, Ny) none The pixel-level indicator of proximity to a coast line (see sym

structure)
desert_mask Int8(Nx, Ny) none The pixel level desert classification (see sym structure)
land_mask Int8(Nx, Ny) none The pixel-level land/water mask (see sym structure)
sfc_emiss10 Float32(Nx, Ny) none Channel 10 surface emissivity
sfc_emiss11 Float32(Nx, Ny) none Channel 11 surface emissivity
sfc_emiss12 Float32(Nx, Ny) none Channel 12 surface emissivity
sfc_emiss13 Float32(Nx, Ny) none Channel 13 surface emissivity
sfc_emiss14 Float32(Nx, Ny) none Channel 14 surface emissivity
sfc_emiss15 Float32(Nx, Ny) none Channel 15 surface emissivity
sfc_emiss16 Float32(Nx, Ny) none Channel 16 surface emissivity
sfc_emiss7 Float32(Nx, Ny) none Channel 7 surface emissivity
sfc_emiss8 Float32(Nx, Ny) none Channel 8 surface emissivity
sfc_emiss9 Float32(Nx, Ny) none Channel 9 surface emissivity
sfc_type Int8(Nx, Ny) none The pixel-level surface type classification (see sym structure)
snow_mask Int8(Nx, Ny) none The pixel-level snow/ice mask (see sym structure)
sst_clim Float32(Nx, Ny) K Monthly mean climatological SST
sst_clim_uni Float32(Nx, Ny) K Monthly mean climatological ST uniformity parameter (e.g.

spatial standard deviation)
volcano_mask Int8(Nx, Ny) none The pixel-level indicator of proximity to a volcano (see sym

structure)
zsfc Float32(Nx, Ny) meters Surface elevation

Table 9: ‘sat’ structure -- RTM data at pixel resolution
variable name data type/size units description
bt_clr10 Float32(Nx, Ny) K Calculated channel 10 clear sky TOA brightness temperature
bt_clr11 Float32(Nx, Ny) K Calculated channel 11 clear sky TOA brightness temperature

bt_clr12 Float32(Nx, Ny) K Calculated channel 12 clear sky TOA brightness temperature
bt_clr13 Float32(Nx, Ny) K Calculated channel 13 clear sky TOA brightness temperature
bt_clr14 Float32(Nx, Ny) K Calculated channel 14 clear sky TOA brightness temperature
bt_clr15 Float32(Nx, Ny) K Calculated channel 15 clear sky TOA brightness temperature
bt_clr16 Float32(Nx, Ny) K Calculated channel 16 clear sky TOA brightness temperature
bt_clr7 Float32(Nx, Ny) K Calculated channel 7 clear sky TOA brightness temperature
bt_clr8 Float32(Nx, Ny) K Calculated channel 8 clear sky TOA brightness temperature
bt_clr9 Float32(Nx, Ny) K Calculated channel 9 clear sky TOA brightness temperature
isfc Int32(Nx, Ny) none The index in the atmospheric profile variables corresponding

to the level that is closest to and above the surface
ivza Int32(Nx, Ny) none The viewing zenith angle index associated with the clear sky

radiance calculations
rad_clr10 Float32(Nx, Ny) mWm-2sr-

1(cm-1)-1
Calculated channel 10 clear sky TOA radiance

rad_clr11 Float32(Nx, Ny) mWm-2sr-

1(cm-1)-1
Calculated channel 11 clear sky TOA radiance

rad_clr12 Float32(Nx, Ny) mWm-2sr-

1(cm-1)-1
Calculated channel 12 clear sky TOA radiance

rad_clr13 Float32(Nx, Ny) mWm-2sr-

1(cm-1)-1
Calculated channel 13 clear sky TOA radiance

rad_clr14 Float32(Nx, Ny) mWm-2sr-

1(cm-1)-1
Calculated channel 14 clear sky TOA radiance

rad_clr15 Float32(Nx, Ny) mWm-2sr-

1(cm-1)-1
Calculated channel 15 clear sky TOA radiance

rad_clr16 Float32(Nx, Ny) mWm-2sr-

1(cm-1)-1
Calculated channel 16 clear sky TOA radiance

rad_clr7 Float32(Nx, Ny) mWm-2sr-

1(cm-1)-1
Calculated channel 7 clear sky TOA radiance

rad_clr8 Float32(Nx, Ny) mWm-2sr-

1(cm-1)-1
Calculated channel 8 clear sky TOA radiance

rad_clr9 Float32(Nx, Ny) mWm-2sr-

1(cm-1)-1
Calculated channel 9 clear sky TOA radiance

Table 10: ‘sat’ structure -- Level 2 clouds and aerosol data
variable name data type/size units description
aeromask Int8(Nx, Ny) none The unpacked results of the default aerosol mask (experimental)
cldmask Int8(Nx, Ny) none The unpacked results of the default cloud mask
cldphase Int8(Nx, Ny) none The unpacked results of the default cloud phase
cldtype Int8(Nx, Ny) none The unpacked results of the default cloud type

Table 11: ‘sat’ structure -- general utility
variable name data type/size units description
area_ch_dump_flg Int8(Nchan) none Array indicating which channels are to be written to a Level 1

file
area_ch_flg Int8(Nchan) none Array indicating whether a given channel is in memory
area_ch_rtm_flg Int8(Nchan) none Array indicating which channels clear sky RTM calculations are

to be performed for
area_rtm_dump_flg Int8(Nchan) none Array indicating which channels are to be written to a RTM file
buf_bt Float32(Nx, Ny) variable Calibration utility parameter
buf_ems Float32(Nx, Ny) variable Calibration utility parameter
buf_rad Float32(Nx, Ny) variable Calibration utility parameter
buf_ref Float32(Nx, Ny) variable Calibration utility parameter
filename string none The name of the file from which the navigation is read
idet Int32 none Radiometric detector index
line_prefix Int16(variable size) none Utility pointer used for reading and calibrating data
machine_byte_ordering Int32 none LITTLE_ENDIAN or BIG_ENDIAN
nalgo Int32 none The total number of valid algorithms available in GEOCAT.

This information is needed for output purposes so that attributes
for non-algorithm output are assigned structures indices that do
not interfere with algorithm output (e.g. sat%nalgo + 1, 2, 3,
etc…).

scaled_int16 Int16(variable size) none Utility pointer used for reading and calibrating data
scaled_int8 Int8(variable size) none Utility pointer used for reading and calibrating data

swap_bytes Int8 none Swap integer bytes read from binary files (NO or YES)

Table 12: ‘nwp’ structure -- NWP data at NWP spatial resolution
variable name data type/size units description
dat profile_params(Nx_nwp,

Ny_nwp)
none Array of structures containing NWP data. See ‘dat’ element

description.
dlat Float32 degrees latitude spacing
dlon Float32 degrees longitude spacing
first_lat Float32 degrees first latitude in the equal angle grid
first_lon Float32 degrees first longitude in the equal angle grid
nlat Int32 none number of latitudes
nlevels Int32 none number of vertical levels in the NWP data
nlevels_nointerp Int32 none original number of vertical levels in the NWP data before

interpolation
nlon Int32 none number of longitudes
rtm_nvzen Int32 none number of viewing angle bins used in the RTM calculations

Table 13: ‘nwp%dat’ array element -- NWP data
variable name data type/size units description
a Float32 none An interpolation weight utility parameter
flag Int8 none A flag indicating whether the profile for the current NWP grid

cell has been interpolated to 101 levels
inversion_lev Int32(Nprof) none Profile of flags that indicates whether a given tropospheric level

is within a temperature inversion (NO or YES)
lat Float32 degrees Central latitude of NWP grid cell
lon Float32 degrees Central longitude of NWP grid cell
ninversion Int32 none The number of tropospheric temperature inversions in a given

profile
o3col Float32 DU The total column ozone amount
o3lev Float32(Nprof) g/kg The atmospheric ozone profile
plev Float32(Nprof) hPa The atmospheric pressure profile
plev_nointerp Float32(Nprof) hPa original pressure level representation
pmsl Float32 hPa The mean sea level pressure
psfc Float32 hPa The surface pressure
ptropo Float32 hPa The pressure at the tropopause
rh2m Float32 % The relative humidity at 2 meters
sfc_level Int32 none The profile index roughly corresponding to the lowest

atmospheric level that is above the surface
snowsfc Float32 cm The liquid equivalent snow depth
strato_level Int32 none The profile index that best describes the level at which the

stratosphere ends and the mesosphere begins
t2m Float32 K The temperature at 2 meters
tlev Float32(Nprof) K The atmospheric temperature profile
tpw Float32 cm The total column precipitable water
tpwlev Float32(Nprof) g/cm-2 The atmospheric precipitable water profile (e.g. integrated water

path)
tropo_level Int32 none The profile index that best describes the level at which the

troposphere ends and the stratosphere begins
tsfc Float32 K The surface temperature
tsfc_uni Float32 K The standard deviation of the surface temperature within a

predefined spatial region that is used to help determine the
proximity to coast lines and mountainous areas

ttropo Float32 K The temperature of the tropopause
ulev_nointerp Float32(Nprof) hPa East / West component of the wind profile, uninterpolated in the

vertical
vlev_nointerp Float32(Nprof) hPa North / South component of the wind profile, uninterpolated in

the vertical
wlev Float32(Nprof) g/kg The atmospheric water vapor profile
zlev Float32(Nprof) m The atmospheric height profile
zsfc Float32 m The surface height
ztropo Float32 m The height of the tropopause

Table 14: ‘rtm%d’ array element -- RTM data
variable name data type/size units description
bt_clr10 Float32 K Clear sky TOA brightness temperature for channel 10 at the

NWP spatial resolution
bt_clr11 Float32 K Clear sky TOA brightness temperature for channel 11 at the

NWP spatial resolution
bt_clr12 Float32 K Clear sky TOA brightness temperature for channel 12 at the

NWP spatial resolution
bt_clr13 Float32 K Clear sky TOA brightness temperature for channel 13 at the

NWP spatial resolution
bt_clr14 Float32 K Clear sky TOA brightness temperature for channel 14 at the

NWP spatial resolution
bt_clr15 Float32 K Clear sky TOA brightness temperature for channel 15 at the

NWP spatial resolution
bt_clr16 Float32 K Clear sky TOA brightness temperature for channel 16 at the

NWP spatial resolution
bt_clr7 Float32 K Clear sky TOA brightness temperature for channel 7 at the

NWP spatial resolution
bt_clr8 Float32 K Clear sky TOA brightness temperature for channel 8 at the

NWP spatial resolution
bt_clr9 Float32 K Clear sky TOA brightness temperature for channel 9 at the

NWP spatial resolution
cloud_prof10 Float32(Nprof) mWm-2sr-

1(cm-1)-1
Black cloud radiance profile for channel 10

cloud_prof11 Float32(Nprof) mWm-2sr-

1(cm-1)-1
Black cloud radiance profile for channel 11

cloud_prof12 Float32(Nprof) mWm-2sr-

1(cm-1)-1
Black cloud radiance profile for channel 12

cloud_prof13 Float32(Nprof) mWm-2sr-

1(cm-1)-1
Black cloud radiance profile for channel 13

cloud_prof14 Float32(Nprof) mWm-2sr-

1(cm-1)-1
Black cloud radiance profile for channel 14

cloud_prof15 Float32(Nprof) mWm-2sr-

1(cm-1)-1
Black cloud radiance profile for channel 15

cloud_prof16 Float32(Nprof) mWm-2sr-

1(cm-1)-1
Black cloud radiance profile for channel 16

cloud_prof7 Float32(Nprof) mWm-2sr-

1(cm-1)-1
Black cloud radiance profile for channel 7

cloud_prof8 Float32(Nprof) mWm-2sr-

1(cm-1)-1
Black cloud radiance profile for channel 8

cloud_prof9 Float32(Nprof) mWm-2sr-

1(cm-1)-1
Black cloud radiance profile for channel 9

flag Int8 none A flag indicating whether calculations for a given viewing
zenith angle have been performed

rad_atm_clr10 Float32(Nprof) mWm-2sr-

1(cm-1)-1
Clear sky atmospheric radiance profile for channel 10

rad_atm_clr11 Float32(Nprof) mWm-2sr-

1(cm-1)-1
Clear sky atmospheric radiance profile for channel 11

rad_atm_clr12 Float32(Nprof) mWm-2sr-

1(cm-1)-1
Clear sky atmospheric radiance profile for channel 12

rad_atm_clr13 Float32(Nprof) mWm-2sr-

1(cm-1)-1
Clear sky atmospheric radiance profile for channel 13

rad_atm_clr14 Float32(Nprof) mWm-2sr-

1(cm-1)-1
Clear sky atmospheric radiance profile for channel 14

rad_atm_clr15 Float32(Nprof) mWm-2sr-

1(cm-1)-1
Clear sky atmospheric radiance profile for channel 15

rad_atm_clr16 Float32(Nprof) mWm-2sr-

1(cm-1)-1
Clear sky atmospheric radiance profile for channel 16

rad_atm_clr7 Float32(Nprof) mWm-2sr-

1(cm-1)-1
Clear sky atmospheric radiance profile for channel 7

rad_atm_clr8 Float32(Nprof) mWm-2sr-

1(cm-1)-1
Clear sky atmospheric radiance profile for channel 8

rad_atm_clr9 Float32(Nprof) mWm-2sr-

1(cm-1)-1
Clear sky atmospheric radiance profile for channel 9

rad_clr10 Float32 mWm-2sr-

1(cm-1)-1
Clear sky TOA radiance for channel 10 at the NWP spatial
resolution

rad_clr11 Float32 mWm-2sr- Clear sky TOA radiance for channel 11 at the NWP spatial

1(cm-1)-1 resolution
rad_clr12 Float32 mWm-2sr-

1(cm-1)-1
Clear sky TOA radiance for channel 12 at the NWP spatial
resolution

rad_clr13 Float32 mWm-2sr-

1(cm-1)-1
Clear sky TOA radiance for channel 13 at the NWP spatial
resolution

rad_clr14 Float32 mWm-2sr-

1(cm-1)-1
Clear sky TOA radiance for channel 14 at the NWP spatial
resolution

rad_clr15 Float32 mWm-2sr-

1(cm-1)-1
Clear sky TOA radiance for channel 15 at the NWP spatial
resolution

rad_clr16 Float32 mWm-2sr-

1(cm-1)-1
Clear sky TOA radiance for channel 16 at the NWP spatial
resolution

rad_clr7 Float32 mWm-2sr-

1(cm-1)-1
Clear sky TOA radiance for channel 7 at the NWP spatial
resolution

rad_clr8 Float32 mWm-2sr-

1(cm-1)-1
Clear sky TOA radiance for channel 8 at the NWP spatial
resolution

rad_clr9 Float32 mWm-2sr-

1(cm-1)-1
Clear sky TOA radiance for channel 9 at the NWP spatial
resolution

rtm_util Float32(Nprof) variable Generic rtm profile utility variable
satzen Float32 degrees The mid point of the viewing angle bin
trans_atm_clr10 Float32(Nprof) none Clear sky atmospheric transmittance profile for channel 10
trans_atm_clr11 Float32(Nprof) none Clear sky atmospheric transmittance profile for channel 11
trans_atm_clr12 Float32(Nprof) none Clear sky atmospheric transmittance profile for channel 12
trans_atm_clr13 Float32(Nprof) none Clear sky atmospheric transmittance profile for channel 13
trans_atm_clr14 Float32(Nprof) none Clear sky atmospheric transmittance profile for channel 14
trans_atm_clr15 Float32(Nprof) none Clear sky atmospheric transmittance profile for channel 15
trans_atm_clr16 Float32(Nprof) none Clear sky atmospheric transmittance profile for channel 16
trans_atm_clr7 Float32(Nprof) none Clear sky atmospheric transmittance profile for channel 7
trans_atm_clr8 Float32(Nprof) none Clear sky atmospheric transmittance profile for channel 8
trans_atm_clr9 Float32(Nprof) none Clear sky atmospheric transmittance profile for channel 9

Table 15: ‘TIMEstr’ structure -- time of the current image
variable name data type/size units description
day Int32 days day of current image
hour Int32 hours hour of cuurent image
hour_frac Float32 hours fractional hour
ileap Int32 none 0 = no leap year, 1 = leap year
jday Int32 days julian day of current image
minute Int32 minutes minute of current image
month Int32 months month of current image
second Int32 seconds second of current image
year Int32 years year of current image

Table 16: ‘out2’ array element -- algorithm output metadata
variable name data type/size units description
ancil_subdir string none The algorithm ancillary data directory
ch_flg Int8(Nchan) none Flag array indicating which channels are available to current

algorithm based on input to algorithm_mod.f90
total_processing_time Float32 seconds Counter to keep a running total of time elapsed in each

algorithm module

Table 17: ‘out2’ array element -- algorithm output data variables
variable name data type/size units description
aero_col Float32(Nx, Ny) tons/m2 Total column aerosol loading
aerobotp Float32(Nx, Ny) hPa Aerosol base pressure
aerobott Float32(Nx, Ny) K Aerosol base temperature
aerobotz Float32(Nx, Ny) m Aerosol base height
aerodeff Float32(Nx, Ny) microns Aerosol effective particle diameter
aeroemiss Float32(Nx, Ny) none Infrared 11-micron aerosol emissivity
aerofrac Float32(Nx, Ny) none Aerosol fraction
aeromask Int8(Nx, Ny) none Final result aerosol mask output

aeromask_packed Int8(Nbytes, Nx, Ny) none Byte-packed aerosol mask output
aerop Float32(Nx, Ny) hPa Aerosol top pressure
aeroreff Float32(Nx, Ny) microns Aerosol effective particle radius
aerot Float32(Nx, Ny) K Aerosol top temperature
aerothick Float32(Nx, Ny) m Aerosol geometrical thickness
aeroz Float32(Nx, Ny) m Aerosol top height
amv_p_high Float32(Nx, Ny) hPa Atmospheric motion vector pressure for high layer
amv_p_low Float32(Nx, Ny) hPa Atmospheric motion vector pressure for low layer
amv_p_mid Float32(Nx, Ny) hPa Atmospheric motion vector pressure for middle layer
amv_t_high Float32(Nx, Ny) K Atmospheric motion vector temperature for high layer
amv_t_low Float32(Nx, Ny) K Atmospheric motion vector temperature for low layer
amv_t_mid Float32(Nx, Ny) K Atmospheric motion vector temperature for middle layer
amv_u_high Float32(Nx, Ny) m/s Atmospheric motion vector u-component for high layer
amv_u_low Float32(Nx, Ny) m/s Atmospheric motion vector u-component for low layer
amv_u_mid Float32(Nx, Ny) m/s Atmospheric motion vector u-component for middle layer
amv_v_high Float32(Nx, Ny) m/s Atmospheric motion vector v-component for high layer
amv_v_low Float32(Nx, Ny) m/s Atmospheric motion vector v-component for low layer
amv_v_mid Float32(Nx, Ny) m/s Atmospheric motion vector v-component for middle layer
amv_z_high Float32(Nx, Ny) m Atmospheric motion vector height for high layer
amv_z_low Float32(Nx, Ny) m Atmospheric motion vector height for low layer
amv_z_mid Float32(Nx, Ny) m Atmospheric motion vector height for middle layer
aod_ir Float32(Nx, Ny) none Infrared 11-micron aerosol optical depth
aod_vis Float32(Nx, Ny) none Visible aerosol optical depth
cape Float32(Nx, Ny) J/kg Convective Available Potential Energy
cldbeta1011 Float32(Nx, Ny) none Cloud effective absorption ratio [10/11]
cldbeta1011_high Float32(Nx, Ny) none Effective absorption ratio of a user chosen high layer

(independent of whether a cloud is present in that layer)
[10/11]

cldbeta1011_low Float32(Nx, Ny) none Effective absorption ratio of a user chosen low layer
(independent of whether a cloud is present in that layer)
[10/11]

cldbeta1011_mid Float32(Nx, Ny) none Effective absorption ratio of a user chosen middle layer
(independent of whether a cloud is present in that layer)
[10/11]

cldbeta1112 Float32(Nx, Ny) none Cloud effective absorption ratio [12/11]
cldbeta1112_high Float32(Nx, Ny) none Effective absorption ratio of a user chosen high layer

(independent of whether a cloud is present in that layer)
[12/11]

cldbeta1112_low Float32(Nx, Ny) none Effective absorption ratio of a user chosen low layer
(independent of whether a cloud is present in that layer)
[12/11]

cldbeta1112_mid Float32(Nx, Ny) none Effective absorption ratio of a user chosen middle layer
(independent of whether a cloud is present in that layer)
[12/11]

cldbeta1113 Float32(Nx, Ny) none Cloud effective absorption ratio [13/11]
cldbeta1113_high Float32(Nx, Ny) none Effective absorption ratio of a user chosen high layer

(independent of whether a cloud is present in that layer)
[13/11]

cldbeta1113_low Float32(Nx, Ny) none Effective absorption ratio of a user chosen low layer
(independent of whether a cloud is present in that layer)
[13/11]

cldbeta1113_mid Float32(Nx, Ny) none Effective absorption ratio of a user chosen middle layer
(independent of whether a cloud is present in that layer)
[13/11]

cldbeta3911 Float32(Nx, Ny) none Cloud effective absorption ratio [3.9/11]
cldbeta3911_high Float32(Nx, Ny) none Effective absorption ratio of a user chosen high layer

(independent of whether a cloud is present in that layer)
[3.9/11]

cldbeta3911_low Float32(Nx, Ny) none Effective absorption ratio of a user chosen low layer
(independent of whether a cloud is present in that layer)
[3.9/11]

cldbeta3911_mid Float32(Nx, Ny) none Effective absorption ratio of a user chosen middle layer
(independent of whether a cloud is present in that layer)
[3.9/11]

cldbeta8511 Float32(Nx, Ny) none Cloud effective absorption ratio [8.5/11]
cldbeta8511_high Float32(Nx, Ny) none Effective absorption ratio of a user chosen high layer

(independent of whether a cloud is present in that layer)
[8.5/11]

cldbeta8511_low Float32(Nx, Ny) none Effective absorption ratio of a user chosen low layer
(independent of whether a cloud is present in that layer)
[8.5/11]

cldbeta8511_mid Float32(Nx, Ny) none Effective absorption ratio of a user chosen middle layer
(independent of whether a cloud is present in that layer)
[8.5/11]

cldbetaxxxx_high Float32(Nx, Ny) none Effective absorption ratio of a user chosen high layer
(independent of whether a cloud is present in that layer) [any
channel/any channel]

cldbetaxxxx_low Float32(Nx, Ny) none Effective absorption ratio of a user chosen low layer
(independent of whether a cloud is present in that layer) [any
channel/any channel]

cldbetaxxxx_mid Float32(Nx, Ny) none Effective absorption ratio of a user chosen middle layer
(independent of whether a cloud is present in that layer) [any
channel/any channel]

cldbotp Float32(Nx, Ny) hPa Cloud base pressure
cldbotp_high Float32(Nx, Ny) hPa Cloud base pressure for the highest cloud layer
cldbotp_low Float32(Nx, Ny) hPa Cloud base pressure for the second highest cloud layer
cldbott Float32(Nx, Ny) K Cloud base temperature
cldbott_high Float32(Nx, Ny) K Cloud base temperature for the highest cloud layer
cldbott_low Float32(Nx, Ny) K Cloud base temperature for the second highest cloud layer
cldbotz Float32(Nx, Ny) m Cloud base height
cldbotz_high Float32(Nx, Ny) m Cloud base height for the highest cloud layer
cldbotz_low Float32(Nx, Ny) m Cloud base height for the second highest cloud layer
clddeff Float32(Nx, Ny) microns Cloud effective particle diameter
clddeff_high Float32(Nx, Ny) microns Cloud effective particle diameter of the highest cloud layer
clddeff_low Float32(Nx, Ny) microns Cloud effective particle diameter of the lowest cloud layer
cldemiss Float32(Nx, Ny) none Infrared 11-micron cloud emissivity
cldemiss_high Float32(Nx, Ny) none Infrared 11-micron emissivity of the highest cloud layer
cldemiss_low Float32(Nx, Ny) none Infrared 11-micron emissivity of the lowest cloud layer
cldfrac Float32(Nx, Ny) none Cloud fraction
cldiwc Float32(Nx, Ny) g/m3 Cloud ice water content
cldiwc_high Float32(Nx, Ny) g/m3 Cloud ice water content for the highest cloud layer
cldiwc_low Float32(Nx, Ny) g/m3 Cloud ice water content for the second highest cloud layer
cldiwp Float32(Nx, Ny) g/m2 Cloud ice water path
cldiwp_high Float32(Nx, Ny) g/m2 Cloud ice water path for the highest cloud layer
cldiwp_low Float32(Nx, Ny) g/m2 Cloud ice water path for the second highest cloud layer
cldlwc Float32(Nx, Ny) g/m3 Cloud liquid water content
cldlwc_high Float32(Nx, Ny) g/m3 Cloud liquid water content for the highest cloud layer
cldlwc_low Float32(Nx, Ny) g/m3 Cloud liquid water content for the second highest cloud layer
cldlwp Float32(Nx, Ny) g/m2 Cloud liquid water path
cldlwp_high Float32(Nx, Ny) g/m2 Cloud liquid water path for the highest cloud layer
cldlwp_low Float32(Nx, Ny) g/m2 Cloud liquid water path for the second highest cloud layer
cldmask Int8(Nx, Ny) none Final result cloud mask output
cldmask_packed Int8(Nbytes, Nx, Ny) none Byte-packed cloud mask output
cldp Float32(Nx, Ny) hPa Cloud top pressure
cldp_high Float32(Nx, Ny) hPa Cloud top pressure for the highest cloud layer
cldp_low Float32(Nx, Ny) hPa Cloud top pressure for the second highest cloud layer
cldphase Int8(Nx, Ny) none Final result cloud phase output
cldphase_high Int8(Nx, Ny) none Final result cloud phase output for the highest cloud layer
cldphase_low Int8(Nx, Ny) none Final result cloud phase output for the second highest cloud

layer
cldphase_packed Int8(Nbytes, Nx, Ny) none Byte-packed cloud phase output
cldreff Float32(Nx, Ny) microns Cloud effective particle radius
cldreff_high Float32(Nx, Ny) microns Cloud effective particle radius of the highest cloud layer
cldreff_low Float32(Nx, Ny) microns Cloud effective particle radius of the lowest cloud layer
cldt Float32(Nx, Ny) K Cloud top temperature
cldt_high Float32(Nx, Ny) K Cloud top temperature for the highest cloud layer
cldt_low Float32(Nx, Ny) K Cloud top temperature for the second highest cloud layer
cldthick Float32(Nx, Ny) m Cloud geometrical thickness
cldthick_high Float32(Nx, Ny) m Cloud geometrical thickness for the highest cloud layer
cldthick_low Float32(Nx, Ny) m Cloud geometrical thickness for the second highest cloud layer
cldtype Int8(Nx, Ny) none Final result cloud type output
cldtype_packed Int8(Nbytes, Nx, Ny) none Byte-packed cloud type output
cldz Float32(Nx, Ny) m Cloud top height
cldz_high Float32(Nx, Ny) m Cloud top height for the highest cloud layer
cldz_low Float32(Nx, Ny) m Cloud top height for the second highest cloud layer

cod_ir Float32(Nx, Ny) none Infrared 11-micron cloud optical depth
cod_ir_high Float32(Nx, Ny) none Infrared 11-micron cloud optical depth for the highest cloud

layer
cod_ir_low Float32(Nx, Ny) none Infrared 11-micron cloud optical depth for the second highest

cloud layer
cod_vis Float32(Nx, Ny) none Visible cloud optical depth
cod_vis_high Float32(Nx, Ny) none Visible cloud optical depth for the highest cloud layer
cod_vis_low Float32(Nx, Ny) none Visible cloud optical depth for the highest cloud layer
emiss_spectra_active NA NA experimental
emiss11_high Float32(Nx, Ny) none Infrared 11-micron emissivity of a user chosen high layer

(independent of whether a cloud is present in that layer)
emiss11_low Float32(Nx, Ny) none Infrared 11-micron emissivity of a user chosen low layer

(independent of whether a cloud is present in that layer)
emiss11_mid Float32(Nx, Ny) none Infrared 11-micron emissivity of a user chosen middle layer

(independent of whether a cloud is present in that layer)
fire_radiative_power Float32(Nx, Ny) W Fire radiative power
fire_size Float32(Nx, Ny) km2 Fire size
fire_temperature Float32(Nx, Ny) K Fire temperature
fire_mask Int8(Nx, Ny) none Final result fire mask output
fire_mask_packed Int8(Nbytes, Nx, Ny) none Byte-packed fire mask output
i1_generic1 Int8(Nx, Ny) variable Int8 workspace
i1_generic2 Int8(Nx, Ny) variable Int8 workspace
i1_generic3 Int8(Nx, Ny) variable Int8 workspace
i1_generic4 Int8(Nx, Ny) variable Int8 workspace
i2_generic1 Int16(Nx, Ny) variable Int16 workspace
i2_generic2 Int16(Nx, Ny) variable Int16 workspace
i2_generic3 Int16(Nx, Ny) variable Int16 workspace
i2_generic4 Int16(Nx, Ny) variable Int16 workspace
i4_generic1 Int32(Nx, Ny) variable Int32 workspace
i4_generic2 Int32(Nx, Ny) variable Int32 workspace
i4_generic3 Int32(Nx, Ny) variable Int32 workspace
i4_generic4 Int32(Nx, Ny) variable Int32 workspace
inversion_dp Float32(Nx, Ny) hPa Temperature inversion pressure depth
inversion_dz Float32(Nx, Ny) m Temperature inversion geometrical depth
inversion_p Float32(Nx, Ny) hPa Temperature inversion pressure
inversion_z Float32(Nx, Ny) m Temperature inversion height
ist Float32(Nx, Ny) K Ice surface temperature
landmask Int8(Nx, Ny) none Final result land mask output
li Float32(Nx, Ny) none Lifted Index
lst Float32(Nx, Ny) K Land surface temperature
ndvi Float32(Nx, Ny) none Normalized vegetation index
o3_col Float32(Nx, Ny) DU Total column ozone loading
o3prof Float32(Nprof, Nx, Ny) g/kg Atmospheric ozone profile
pprof Float32(Nprof, Nx, Ny) hPa Atmospheric pressure profile
pprof_active NA NA experimental
pprof_single NA NA experimental
qcflg1 Int8(Nbytes, Nx, Ny) none Generic quality flag array
qcflg2 Int8(Nbytes, Nx, Ny) none Generic quality flag array
qcflg3 Int8(Nx, Ny, Nbytes) none Generic quality flag array
qcflg4 Int8(Nx, Ny, Nbytes) none Generic quality flag array
r4_generic1 Float32(Nx, Ny) variable Float32 workspace
r4_generic2 Float32(Nx, Ny) variable Float32 workspace
r4_generic3 Float32(Nx, Ny) variable Float32 workspace
r4_generic4 Float32(Nx, Ny) variable Float32 workspace
r8_generic1 Float64(Nx, Ny) variable Float64 workspace
r8_generic2 Float64(Nx, Ny) variable Float64 workspace
r8_generic3 Float64(Nx, Ny) variable Float64 workspace
r8_generic4 Float64(Nx, Ny) variable Float64 workspace
sfc_index_active NA NA experimental
sfc_mask_active NA NA experimental
so2_col Float32(Nx, Ny) DU Total column SO2 loading
sst Float32(Nx, Ny) K Sea surface temperature
tprof Float32(Nprof, Nx, Ny) K Atmospheric temperature profile
tprof_active NA NA experimental
tpw Float32(Nx, Ny) cm Total precipitable water vapor
tpw_high Float32(Nx, Ny) cm Total precipitable water vapor of the high layer
tpw_low Float32(Nx, Ny) cm Total precipitable water vapor of the low layer

tpw_mid Float32(Nx, Ny) cm Total precipitable water vapor of the middle layer
tropo_index_active NA NA experimental
tt Float32(Nx, Ny) none Totals Totals Index
uprof Float32(Nprof, Nx, Ny) m/s Atmospheric zonal wind profile
vprof Float32(Nprof, Nx, Ny) m/s Atmospheric meridional wind profile
wprof Float32(Nprof, Nx, Ny) g/kg Atmospheric water vapor profile
wprof_active NA NA experimental
zprof Float32(Nprof, Nx, Ny) m Atmospheric height profile
zprof_active NA NA experimental
zsfc_active NA NA experimental

Table 18: utility functions and subroutines available to algorithm modules
utility name location description
call_planck_rad_func fct_pointers.c Call the c-language planck function brightness temperature to

radiance conversion routine
call_planck_temp_func fct_pointers.c Call the c-language planck function radiance to brightness

temperature conversion routine
compute_day num_mod.f90 Computes a calendar day given a julian day and a leap year flag
compute_month num_mod.f90 Determines month given a julian day and leap year flag
compute_spatial_uniformity num_mod.f90 Computes the mean, max, min, and standard deviation for each

pixel of a pixel array given the number of surrounding pixels to
include in the calculation as input

destroy_spatial_uniformity num_mod.f90 This utility destroys the output arrays created by
compute_spatial_uniformity

display_message Message_Handler_geocat.f90 Display a message to screen
find_bounds num_mod.f90 Determines the bounds of an array of pixels in lat/lon coordinates
gradient2d num_mod.f90 Determines the direction of the gradient vector for each pixel

given a 2D array of pixels
gradient2d_reverse num_mod.f90 Determines the direction of the negative gradient vector for each

pixel given a 2D array of pixels
icnvrt num_mod.f90 Converts integers to characters and vice-versa
invert_2x2 num_mod.f90 Matrix inversion for a 2 x 2 matrix
invert_3x3 num_mod.f90 Matrix inversion for a 3 x 3 matrix
julian num_mod.f90 Calculate the julian day given mm/dd/yyyy information
leap_year_fct num_mod.f90 Determines if a given year is a leap year
load_temporal_data temporal_utils.f90 This interface is used to quickly load L1, L2, or RTM data from

previous or “future” time steps into memory
locate num_mod.f90 Numerical recipes bisection search
median_filter num_mod.f90 Filters an array of pixels using a median filter
pack_bytes num_mod.f90 Takes an array of bytes and packs them into an output byte array

according to the bit depth of the individual input bytes
planck_rad_fast planck.f90 A fast look-up table based brightness temperature to radiance

conversion routine
planck_temp_fast planck.f90 A fast look-up table based radiance to brightness temperature

conversion routine

