
GOES-R AITGOES-R AIT

Algorithm ProcessingAlgorithm Processing
FrameworkFramework

Presented byPresented by

Processing Framework
Overview

 Framework written in C/C++

 Uses structures to pass information between C++ and Fortran

 C++ and Fortran data structures need to be synchronized

• padding required in C++ structures for certain types

• padding is compiler dependent

• padding is rank dependent

 Calls Fortran routines to allocate/deallocate memory

 Loads input data

 Calls algorithms

 Writes results to disk

Processing Framework
Flowchart

Algorithms can be
written in C or
Fortran

Processing Framework
Tools

Perl Scripts

• Generate equivalent C structures from the
Fortran structures

• Generate Fortran allocate and deallocate
routines from the information contained in
the structures

Allows us to make changes to the structures in
one place (Fortran)… then automatically
update the code for the C structures, and
Fortran allocate/deallocate.

Code Framework
Overview

Fortran structures C structures (generated with Perl script)

Padding is required
when the equivalent
Fortran type is an
array pointer.

Code Framework
Overview

Fortran structures C structures

Interface between FrameworkInterface between Framework
and Algorithmsand Algorithms

•• Data structures for input data within the framework.Data structures for input data within the framework.

•• Data structures within the algorithm code to move theData structures within the algorithm code to move the
data around.data around.

•• Interface subroutine the match the data in the twoInterface subroutine the match the data in the two
data structures.data structures.

•• Data matching can be instrument specific; case or ifData matching can be instrument specific; case or if
statements within the interface subroutine.statements within the interface subroutine.

Delivered Algorithm Package
(DAP)

 Source Code
This includes all the source code necessary to build your algorithm, as well as any scripts or
makefiles used in the build process. Code to test your algorithm should also be included.

 Tools required for compilation
This includes things like NetCDF and HDF libraries and compilers that were used to compile the
code.

 Test Information
This includes descriptions, plans, and/or procedures on how to test your algorithm. Any
performance testing results you may have generated should also be included.

 Data Files
This includes test input data files, ancillary data files, and the test output files for comparison to our
runs.

 Documentation
This includes all information on how to build, run, and verify the output of your algorithm. It also
includes such things as:
• Flow Diagrams
• Production Rules
• Process Control File
• Algorithm Theoretical Basis Documents (ATBDs)
• Software Implementation Document
• List of known latency and accuracy issues, error handling/messaging codes, and resources for
execution.

DeliveriesDeliveries

•• Three deliveries with a possible Delta deliveryThree deliveries with a possible Delta delivery
»» Delivery IDelivery I

–– Working codeWorking code
»» Delivery IIDelivery II

–– Working code that meets the standards (80%).Working code that meets the standards (80%).
–– Draft ATBD should be done by this point.Draft ATBD should be done by this point.

»» Delivery IIIDelivery III
–– Working code that meets standards andWorking code that meets standards and

accuracyaccuracy
–– All documentation included.All documentation included.

»» Delta Delivery Delta Delivery –– Just science algorithms. Just science algorithms.

Algorithm Acceptance
Procedure

1. Check-out from CM
Check-out a working copy of the algorithm package from revision control.

2. Makefile
Verify a Makefile exists to build the entire package. Modify the Makefile to use our

compilers.

3. Compile
Compile the source code with our compilers.
Linux – PGI and Intel
IBM – XL

4. Verify output
Run the code as-is to verify our output matches their output

5. Valgrind
Valgrind is a suite of tools for debugging and profiling Linux programs. Memcheck is
one of these tools which can check for memory errors. Compile your program with -g
to include debugging information so that Memcheck's error messages include exact
line numbers.

Algorithm Acceptance
Procedure (cont.)

6.Profiling
Profiling gives an indication of how much time is spent in each function. Compile the source
code with the –pg option (for gprof use) or the –Mprof=func option (for pgprof use). Run the
code in its normal way and when it is done there should be a gmon.out (or pgprof.out if
–Mprof=func was used) file to analyze with gprof (or pgprof if –Mprof=func was used).

7.Forcheck (fortran code)
Use Forecheck on Fortran code to check for non-standard source code and other bugs that
may not have been caught by the compiler.

8.Lint (C code)
Use lint (or splint, which claims to be a better lint) on C code to check for common
programming mistakes

9.Code Checker
Use our in house code checking tools to verify the source code meets our coding standards.

10.Commentary
Perform a Peer Review to make sure comments in the code are readable, concise, and
informative.

11.Check-in to CM
Check-in the updated algorithm package to revision control.

Fl
ow

ch
ar

t S
ta

tu
s

Fl
ow

ch
ar

t S
ta

tu
s

